Abdeltawab M. Saeed, I. Abdou, A. A. Salem, Mohammad A. Ghattas, Noor Atatreh, Shaikha S. Alneyadi
{"title":"吡喃[3,2 - c]喹啉类似物的抗癌活性及分子对接","authors":"Abdeltawab M. Saeed, I. Abdou, A. A. Salem, Mohammad A. Ghattas, Noor Atatreh, Shaikha S. Alneyadi","doi":"10.4236/ojmc.2020.101001","DOIUrl":null,"url":null,"abstract":"Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. A molecular docking study was employed to investigate the binding and functional properties of 3-amino pyranoquinolinone 2a-c as anti-cancer agents. The three 3-amino pyranoquinolinone 2a-c showed an interesting ability to intercalate the DNA-topoisomerase complex and were able to obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). Compound 2c containing butyl chain superiority over the other two compounds 2a-b which appeared to be involved in arene-H interactions with the two dG13 aromatic centers. The butyl chain also appeared to be immersed into a side subpocket formed by the side chains of Asn520 and Glu522 and the backbone amide of Arg503, Gly504, Lys505 and Ile506. Hence, the 3-amino pyranoquinolinone 2c used as starting material to prepare derivatives of pyrano[3,2-c]quinolone containing 1,2,4-triazine ring 4a-b which will enhance the anti-cancer activity. Pyrano[3,2-c]quinoline-2,5-diones 2a-c and 4a-b were evaluated in vitro on cell lines Ehrlich Ascites carcinoma cells (EAC), liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 for the development of novel anticancer agents. The screening results revealed that compounds 4a-b were found most active candidates as anticancer agents.","PeriodicalId":68630,"journal":{"name":"药物化学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Anti-Cancer Activity and Molecular Docking of Some Pyrano[3,2‑c]quinoline Analogues\",\"authors\":\"Abdeltawab M. Saeed, I. Abdou, A. A. Salem, Mohammad A. Ghattas, Noor Atatreh, Shaikha S. Alneyadi\",\"doi\":\"10.4236/ojmc.2020.101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. A molecular docking study was employed to investigate the binding and functional properties of 3-amino pyranoquinolinone 2a-c as anti-cancer agents. The three 3-amino pyranoquinolinone 2a-c showed an interesting ability to intercalate the DNA-topoisomerase complex and were able to obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). Compound 2c containing butyl chain superiority over the other two compounds 2a-b which appeared to be involved in arene-H interactions with the two dG13 aromatic centers. The butyl chain also appeared to be immersed into a side subpocket formed by the side chains of Asn520 and Glu522 and the backbone amide of Arg503, Gly504, Lys505 and Ile506. Hence, the 3-amino pyranoquinolinone 2c used as starting material to prepare derivatives of pyrano[3,2-c]quinolone containing 1,2,4-triazine ring 4a-b which will enhance the anti-cancer activity. Pyrano[3,2-c]quinoline-2,5-diones 2a-c and 4a-b were evaluated in vitro on cell lines Ehrlich Ascites carcinoma cells (EAC), liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 for the development of novel anticancer agents. The screening results revealed that compounds 4a-b were found most active candidates as anticancer agents.\",\"PeriodicalId\":68630,\"journal\":{\"name\":\"药物化学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药物化学期刊(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ojmc.2020.101001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药物化学期刊(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojmc.2020.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-Cancer Activity and Molecular Docking of Some Pyrano[3,2‑c]quinoline Analogues
Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. A molecular docking study was employed to investigate the binding and functional properties of 3-amino pyranoquinolinone 2a-c as anti-cancer agents. The three 3-amino pyranoquinolinone 2a-c showed an interesting ability to intercalate the DNA-topoisomerase complex and were able to obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). Compound 2c containing butyl chain superiority over the other two compounds 2a-b which appeared to be involved in arene-H interactions with the two dG13 aromatic centers. The butyl chain also appeared to be immersed into a side subpocket formed by the side chains of Asn520 and Glu522 and the backbone amide of Arg503, Gly504, Lys505 and Ile506. Hence, the 3-amino pyranoquinolinone 2c used as starting material to prepare derivatives of pyrano[3,2-c]quinolone containing 1,2,4-triazine ring 4a-b which will enhance the anti-cancer activity. Pyrano[3,2-c]quinoline-2,5-diones 2a-c and 4a-b were evaluated in vitro on cell lines Ehrlich Ascites carcinoma cells (EAC), liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 for the development of novel anticancer agents. The screening results revealed that compounds 4a-b were found most active candidates as anticancer agents.