{"title":"非线性椭圆分数阶方程无穷远处的Morse引理","authors":"W. Abdelhedi, H. Hajaiej, Zeinab Mhamdi","doi":"10.4171/RSMUP/82","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the following nonlinear fractional critical equation with zero Dirichlet boundary condition Asu = Ku n+2s n−2s , u > 0 in Ω and u = 0 on ∂Ω, whereK is a positive function, Ω is a regular bounded domain of R, n ≥ 2 and As, s ∈ (0, 1) represents the spectral fractional Laplacian operator (−∆) in Ω with zero Dirichlet boundary condition. We prove a version of Morse lemmas at infinity for this problem. We also exhibit a relevant application of our novel result. More precisely, we characterize the critical points at infinity of the associated variational problem and we prove an existence result for s = 1 2 and n = 3. Mathematics Subject Classification (2010). Primary: 35J65; Secondary: 35R11, 58J20, 58C30.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Morse lemma at infinity for nonlinear elliptic fractional equations\",\"authors\":\"W. Abdelhedi, H. Hajaiej, Zeinab Mhamdi\",\"doi\":\"10.4171/RSMUP/82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the following nonlinear fractional critical equation with zero Dirichlet boundary condition Asu = Ku n+2s n−2s , u > 0 in Ω and u = 0 on ∂Ω, whereK is a positive function, Ω is a regular bounded domain of R, n ≥ 2 and As, s ∈ (0, 1) represents the spectral fractional Laplacian operator (−∆) in Ω with zero Dirichlet boundary condition. We prove a version of Morse lemmas at infinity for this problem. We also exhibit a relevant application of our novel result. More precisely, we characterize the critical points at infinity of the associated variational problem and we prove an existence result for s = 1 2 and n = 3. Mathematics Subject Classification (2010). Primary: 35J65; Secondary: 35R11, 58J20, 58C30.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/RSMUP/82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RSMUP/82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑以下零Dirichlet边界条件的非线性分数阶临界方程Asu = Ku n+2s n−2s, u > 0在Ω上,u = 0在∂Ω上,其中ek是一个正函数,Ω是R, n≥2的正则有界域,As, s∈(0,1)表示零Dirichlet边界条件下Ω上的谱分数阶拉普拉斯算子(-∆)。对于这个问题,我们证明了无穷远处摩尔斯引理的一个版本。我们还展示了我们的新结果的相关应用。更准确地说,我们刻画了相关变分问题在无穷远处的临界点,并证明了s = 1 2和n = 3的存在性结果。数学学科分类(2010)。主:35 j65;次级:35R11、58J20、58C30。
A Morse lemma at infinity for nonlinear elliptic fractional equations
In this paper, we consider the following nonlinear fractional critical equation with zero Dirichlet boundary condition Asu = Ku n+2s n−2s , u > 0 in Ω and u = 0 on ∂Ω, whereK is a positive function, Ω is a regular bounded domain of R, n ≥ 2 and As, s ∈ (0, 1) represents the spectral fractional Laplacian operator (−∆) in Ω with zero Dirichlet boundary condition. We prove a version of Morse lemmas at infinity for this problem. We also exhibit a relevant application of our novel result. More precisely, we characterize the critical points at infinity of the associated variational problem and we prove an existence result for s = 1 2 and n = 3. Mathematics Subject Classification (2010). Primary: 35J65; Secondary: 35R11, 58J20, 58C30.