基于近红外图像的手背静脉生物特征识别

Julian M. Ruiz-Echeverri, Juan C. Bernal-Romero, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto
{"title":"基于近红外图像的手背静脉生物特征识别","authors":"Julian M. Ruiz-Echeverri, Juan C. Bernal-Romero, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto","doi":"10.1109/I2MTC50364.2021.9459955","DOIUrl":null,"url":null,"abstract":"This paper presents a biometric system on dorsal hand vein images in the near infrared (NIR), with an approach based on fusion of classifiers at score level. Fiducial features containing information on texture and shape are used with two classifiers based on Chi-square distance and Dynamic Time Warping (DTW), respectively, and further fused at score level. A collection of experiments using a publicly available dataset obtained from Universidad de Las Palmas de Gran Canaria was carried out. The obtained results indicate an Equal Error Rate of EER=0.0486 and EER=0.0274 and in average with classifiers fusion using sum and multiplication of scores in verification mode, and recognition rate of RR=95.80% and RR=97.30% in identification mode, respectively. These results represent an improvement with respect to results obtained when both classifiers and features are used individually.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"52 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dorsal hand veins biometrics using NIR images with fusion of classifiers at score level\",\"authors\":\"Julian M. Ruiz-Echeverri, Juan C. Bernal-Romero, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto\",\"doi\":\"10.1109/I2MTC50364.2021.9459955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a biometric system on dorsal hand vein images in the near infrared (NIR), with an approach based on fusion of classifiers at score level. Fiducial features containing information on texture and shape are used with two classifiers based on Chi-square distance and Dynamic Time Warping (DTW), respectively, and further fused at score level. A collection of experiments using a publicly available dataset obtained from Universidad de Las Palmas de Gran Canaria was carried out. The obtained results indicate an Equal Error Rate of EER=0.0486 and EER=0.0274 and in average with classifiers fusion using sum and multiplication of scores in verification mode, and recognition rate of RR=95.80% and RR=97.30% in identification mode, respectively. These results represent an improvement with respect to results obtained when both classifiers and features are used individually.\",\"PeriodicalId\":6772,\"journal\":{\"name\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"52 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC50364.2021.9459955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于分数水平分类器融合的近红外手背静脉图像生物识别系统。将包含纹理和形状信息的基准特征分别与基于卡方距离和动态时间扭曲(DTW)的两种分类器结合使用,并在分数水平上进一步融合。使用从大加那利岛拉斯帕尔马斯大学获得的公开可用数据集进行了一系列实验。结果表明,在验证模式下,采用分数和乘法融合的分类器的平均错误率为EER=0.0486和EER=0.0274,识别模式下的识别率分别为RR=95.80%和RR=97.30%。这些结果与单独使用分类器和特征时获得的结果相比有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dorsal hand veins biometrics using NIR images with fusion of classifiers at score level
This paper presents a biometric system on dorsal hand vein images in the near infrared (NIR), with an approach based on fusion of classifiers at score level. Fiducial features containing information on texture and shape are used with two classifiers based on Chi-square distance and Dynamic Time Warping (DTW), respectively, and further fused at score level. A collection of experiments using a publicly available dataset obtained from Universidad de Las Palmas de Gran Canaria was carried out. The obtained results indicate an Equal Error Rate of EER=0.0486 and EER=0.0274 and in average with classifiers fusion using sum and multiplication of scores in verification mode, and recognition rate of RR=95.80% and RR=97.30% in identification mode, respectively. These results represent an improvement with respect to results obtained when both classifiers and features are used individually.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信