{"title":"广义维里应力张量的统计方法","authors":"Paul Jouanna, Stéphane Brocas","doi":"10.1016/S1620-7742(01)01391-5","DOIUrl":null,"url":null,"abstract":"<div><p>The classical virial theorem, applied to particles without internal structure, is used to make a direct statistical estimation of a fluid pressure avoiding a thermodynamical potential derivation. Generalising this theorem to structured media leads to a direct statistical estimation of the stress tensor.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 11","pages":"Pages 775-782"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01391-5","citationCount":"6","resultStr":"{\"title\":\"Approche statistique du tenseur des contraintes par le viriel généralisé\",\"authors\":\"Paul Jouanna, Stéphane Brocas\",\"doi\":\"10.1016/S1620-7742(01)01391-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classical virial theorem, applied to particles without internal structure, is used to make a direct statistical estimation of a fluid pressure avoiding a thermodynamical potential derivation. Generalising this theorem to structured media leads to a direct statistical estimation of the stress tensor.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 11\",\"pages\":\"Pages 775-782\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01391-5\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approche statistique du tenseur des contraintes par le viriel généralisé
The classical virial theorem, applied to particles without internal structure, is used to make a direct statistical estimation of a fluid pressure avoiding a thermodynamical potential derivation. Generalising this theorem to structured media leads to a direct statistical estimation of the stress tensor.