{"title":"巴拿赫空间单位球的框架","authors":"Ryotaro Tanaka","doi":"10.2478/s11533-014-0437-7","DOIUrl":null,"url":null,"abstract":"The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c0 and ℓp are determined.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"11 1","pages":"1700-1713"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the frame of the unit ball of Banach spaces\",\"authors\":\"Ryotaro Tanaka\",\"doi\":\"10.2478/s11533-014-0437-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c0 and ℓp are determined.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"1700-1713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0437-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0437-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c0 and ℓp are determined.