{"title":"函数和黎曼函数的代数微分方程","authors":"F. Lü","doi":"10.5186/AASFM.2019.4455","DOIUrl":null,"url":null,"abstract":"Abstract. Due to Voronin’s universality theorem and Riemann–von Mangoldt formula, this paper concerns the problem of algebraic differential independence between the gamma function Γ and the function f(ζ), where ζ is the Riemann zeta function and f is a function with at least one zero-point. It is showed that Γ and f(ζ) cannot satisfy any nontrivial distinguished differential equation with meromorphic coefficients φ having Nevanlinna characteristic satisfying T (r, φ) = o(r) as r → ∞.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On algebraic differential equations of gamma function and Riemann zeta function\",\"authors\":\"F. Lü\",\"doi\":\"10.5186/AASFM.2019.4455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Due to Voronin’s universality theorem and Riemann–von Mangoldt formula, this paper concerns the problem of algebraic differential independence between the gamma function Γ and the function f(ζ), where ζ is the Riemann zeta function and f is a function with at least one zero-point. It is showed that Γ and f(ζ) cannot satisfy any nontrivial distinguished differential equation with meromorphic coefficients φ having Nevanlinna characteristic satisfying T (r, φ) = o(r) as r → ∞.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4455\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4455","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
摘要
摘要利用Voronin的通用性定理和Riemann - von Mangoldt公式,研究了函数Γ与函数f(ζ)的代数微分无关性问题,其中ζ是Riemann ζ函数,f是至少有一个零点的函数。证明了Γ和f(ζ)不能满足任何亚纯系数φ具有满足T (r, φ) = o(r)为r→∞的Nevanlinna特征的非平凡微分方程。
On algebraic differential equations of gamma function and Riemann zeta function
Abstract. Due to Voronin’s universality theorem and Riemann–von Mangoldt formula, this paper concerns the problem of algebraic differential independence between the gamma function Γ and the function f(ζ), where ζ is the Riemann zeta function and f is a function with at least one zero-point. It is showed that Γ and f(ζ) cannot satisfy any nontrivial distinguished differential equation with meromorphic coefficients φ having Nevanlinna characteristic satisfying T (r, φ) = o(r) as r → ∞.
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.