三维接触流形中小球体积与亚黎曼曲率

Pub Date : 2018-02-27 DOI:10.4310/jsg.2020.v18.n2.a1
D. Barilari, I. Beschastnyi, A. Lerário
{"title":"三维接触流形中小球体积与亚黎曼曲率","authors":"D. Barilari, I. Beschastnyi, A. Lerário","doi":"10.4310/jsg.2020.v18.n2.a1","DOIUrl":null,"url":null,"abstract":"We compute the asymptotic expansion of the volume of small sub-Riemannian balls in a contact 3-dimensional manifold, and we express the first meaningful geometric coefficients in terms of geometric invariants of the sub-Riemannian structure","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Volume of small balls and sub-Riemannian curvature in 3D contact manifolds\",\"authors\":\"D. Barilari, I. Beschastnyi, A. Lerário\",\"doi\":\"10.4310/jsg.2020.v18.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the asymptotic expansion of the volume of small sub-Riemannian balls in a contact 3-dimensional manifold, and we express the first meaningful geometric coefficients in terms of geometric invariants of the sub-Riemannian structure\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2020.v18.n2.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们计算了接触三维流形中亚黎曼小球体积的渐近展开式,并用亚黎曼结构的几何不变量表示了第一个有意义的几何系数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Volume of small balls and sub-Riemannian curvature in 3D contact manifolds
We compute the asymptotic expansion of the volume of small sub-Riemannian balls in a contact 3-dimensional manifold, and we express the first meaningful geometric coefficients in terms of geometric invariants of the sub-Riemannian structure
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信