三维接触流形中小球体积与亚黎曼曲率

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Barilari, I. Beschastnyi, A. Lerário
{"title":"三维接触流形中小球体积与亚黎曼曲率","authors":"D. Barilari, I. Beschastnyi, A. Lerário","doi":"10.4310/jsg.2020.v18.n2.a1","DOIUrl":null,"url":null,"abstract":"We compute the asymptotic expansion of the volume of small sub-Riemannian balls in a contact 3-dimensional manifold, and we express the first meaningful geometric coefficients in terms of geometric invariants of the sub-Riemannian structure","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Volume of small balls and sub-Riemannian curvature in 3D contact manifolds\",\"authors\":\"D. Barilari, I. Beschastnyi, A. Lerário\",\"doi\":\"10.4310/jsg.2020.v18.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the asymptotic expansion of the volume of small sub-Riemannian balls in a contact 3-dimensional manifold, and we express the first meaningful geometric coefficients in terms of geometric invariants of the sub-Riemannian structure\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2020.v18.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2020.v18.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们计算了接触三维流形中亚黎曼小球体积的渐近展开式,并用亚黎曼结构的几何不变量表示了第一个有意义的几何系数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume of small balls and sub-Riemannian curvature in 3D contact manifolds
We compute the asymptotic expansion of the volume of small sub-Riemannian balls in a contact 3-dimensional manifold, and we express the first meaningful geometric coefficients in terms of geometric invariants of the sub-Riemannian structure
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信