基于大数据的map -约简技术缺失数据填充算法

Fugui Li, Ashutosh Sharma
{"title":"基于大数据的map -约简技术缺失数据填充算法","authors":"Fugui Li, Ashutosh Sharma","doi":"10.4018/ijec.304036","DOIUrl":null,"url":null,"abstract":"In big data, the large number of missing values has a serious problem to compute the correct decision. This problem seriously affects the quality of information query, distorts data mining and analysis, and misleads the decisions. Therefore, in order to solve the missing values in the real database, we have pre populated the missing data, and filled in the classification attributes based on the probabilistic reasoning. The reasoning process is completed in Bayesian network to realize the parallelization of big data processing. The proposed algorithm has been presented in the Map-Reduce framework. The experimental results show that the Bayesian network construction method and probabilistic inference are effective for the classification data processing, and the parallelism of algorithm in Hadoop.","PeriodicalId":13957,"journal":{"name":"Int. J. e Collab.","volume":"7 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing Data Filling Algorithm for Big Data-Based Map-Reduce Technology\",\"authors\":\"Fugui Li, Ashutosh Sharma\",\"doi\":\"10.4018/ijec.304036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In big data, the large number of missing values has a serious problem to compute the correct decision. This problem seriously affects the quality of information query, distorts data mining and analysis, and misleads the decisions. Therefore, in order to solve the missing values in the real database, we have pre populated the missing data, and filled in the classification attributes based on the probabilistic reasoning. The reasoning process is completed in Bayesian network to realize the parallelization of big data processing. The proposed algorithm has been presented in the Map-Reduce framework. The experimental results show that the Bayesian network construction method and probabilistic inference are effective for the classification data processing, and the parallelism of algorithm in Hadoop.\",\"PeriodicalId\":13957,\"journal\":{\"name\":\"Int. J. e Collab.\",\"volume\":\"7 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. e Collab.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijec.304036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. e Collab.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijec.304036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大数据中,大量的缺失值给计算正确的决策带来了严重的问题。该问题严重影响了信息查询的质量,扭曲了数据挖掘和分析,误导了决策。因此,为了解决真实数据库中的缺失值,我们对缺失数据进行了预填充,并基于概率推理填充分类属性。推理过程在贝叶斯网络中完成,实现大数据处理的并行化。该算法已在Map-Reduce框架中提出。实验结果表明,贝叶斯网络构建方法和概率推理对于分类数据的处理是有效的,并且在Hadoop中算法的并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Missing Data Filling Algorithm for Big Data-Based Map-Reduce Technology
In big data, the large number of missing values has a serious problem to compute the correct decision. This problem seriously affects the quality of information query, distorts data mining and analysis, and misleads the decisions. Therefore, in order to solve the missing values in the real database, we have pre populated the missing data, and filled in the classification attributes based on the probabilistic reasoning. The reasoning process is completed in Bayesian network to realize the parallelization of big data processing. The proposed algorithm has been presented in the Map-Reduce framework. The experimental results show that the Bayesian network construction method and probabilistic inference are effective for the classification data processing, and the parallelism of algorithm in Hadoop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信