具有扭转商的自由子群与具有环面商的无限子群

Wayne Lewis, P. Loth, A. Mader
{"title":"具有扭转商的自由子群与具有环面商的无限子群","authors":"Wayne Lewis, P. Loth, A. Mader","doi":"10.4171/rsmup/64","DOIUrl":null,"url":null,"abstract":"Here “group” means abelian group. Compact connected groups contain ı-subgroups, that is, compact totally disconnected subgroups with torus quotients, which are essential ingredients in the important Resolution Theorem, a description of compact groups. Dually, full free subgroups of discrete torsion-free groups of finite rank are studied in order to obtain a comprehensive picture of the abundance of ı-subgroups of a protorus. Associated concepts are also considered. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"54 35 1","pages":"177-195"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free subgroups with torsion quotients and profinite subgroups with torus quotients\",\"authors\":\"Wayne Lewis, P. Loth, A. Mader\",\"doi\":\"10.4171/rsmup/64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here “group” means abelian group. Compact connected groups contain ı-subgroups, that is, compact totally disconnected subgroups with torus quotients, which are essential ingredients in the important Resolution Theorem, a description of compact groups. Dually, full free subgroups of discrete torsion-free groups of finite rank are studied in order to obtain a comprehensive picture of the abundance of ı-subgroups of a protorus. Associated concepts are also considered. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"54 35 1\",\"pages\":\"177-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这里的“群”是指阿贝尔群。紧连通群包含ı-subgroups,即具有环面商的紧全不连通子群,它们是紧群描述的重要分解定理的基本成分。对偶研究了有限秩离散无扭群的满自由子群,得到了原盘ı-subgroups丰度的全貌。还考虑了相关概念。数学学科分类(2010)。主:22 c05;次级:20K15、22B05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free subgroups with torsion quotients and profinite subgroups with torus quotients
Here “group” means abelian group. Compact connected groups contain ı-subgroups, that is, compact totally disconnected subgroups with torus quotients, which are essential ingredients in the important Resolution Theorem, a description of compact groups. Dually, full free subgroups of discrete torsion-free groups of finite rank are studied in order to obtain a comprehensive picture of the abundance of ı-subgroups of a protorus. Associated concepts are also considered. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信