极端载荷作用下FRP复合材料的本构建模

IF 0.7 Q4 MECHANICS
J. Asaro, D. Benson
{"title":"极端载荷作用下FRP复合材料的本构建模","authors":"J. Asaro, D. Benson","doi":"10.2298/TAM180415011A","DOIUrl":null,"url":null,"abstract":"A physically based, finite deformation, rate and temperature dependent theory and model have been developed to simulate the deformation and failure of FRP composite materials and structures. Failure modes include: inter alia, fiber crushing and kinking as occurs during extreme compressive loading; fiber fracture as occurs in for example fragmentation; interlaminar shear as occurs at elevated temperatures and that leads to kinking; debonding and delamination including the coupling with laminate kinking; and debonding as occurs in cored FRP panels. The theory/model is capable of describing quasi-static (including creep) as occurs at elevated temperatures, and dynamic deformation and failure as occurs during shock, blast or impact. The model is implemented within LS DYNA and specific example simulations are described that illustrate the theory/model capabilities. In Part I, fragmentation is not covered in detail. Fiber fracture and fragmentation are to be covered to detail with specific examples in Part II.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"6 1","pages":"205-230"},"PeriodicalIF":0.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constitutive modeling for FRP composite materials subject to extreme loading\",\"authors\":\"J. Asaro, D. Benson\",\"doi\":\"10.2298/TAM180415011A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physically based, finite deformation, rate and temperature dependent theory and model have been developed to simulate the deformation and failure of FRP composite materials and structures. Failure modes include: inter alia, fiber crushing and kinking as occurs during extreme compressive loading; fiber fracture as occurs in for example fragmentation; interlaminar shear as occurs at elevated temperatures and that leads to kinking; debonding and delamination including the coupling with laminate kinking; and debonding as occurs in cored FRP panels. The theory/model is capable of describing quasi-static (including creep) as occurs at elevated temperatures, and dynamic deformation and failure as occurs during shock, blast or impact. The model is implemented within LS DYNA and specific example simulations are described that illustrate the theory/model capabilities. In Part I, fragmentation is not covered in detail. Fiber fracture and fragmentation are to be covered to detail with specific examples in Part II.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"6 1\",\"pages\":\"205-230\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM180415011A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM180415011A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

一个基于物理的,有限变形,速率和温度相关的理论和模型已经发展到模拟FRP复合材料和结构的变形和破坏。破坏模式包括:在极端压缩载荷下发生的纤维破碎和扭结;纤维断裂发生在例如碎裂;在高温下发生的层间剪切导致扭结;剥离和分层,包括与层压板扭结的耦合;以及在有芯玻璃钢板中发生的剥离。该理论/模型能够描述在高温下发生的准静态(包括蠕变),以及在冲击、爆炸或撞击过程中发生的动态变形和破坏。该模型在LS DYNA中实现,并描述了具体的示例仿真,说明了理论/模型的能力。在第1部分中,没有详细介绍碎片。纤维断裂和碎裂将在第二部分用具体的例子详细介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constitutive modeling for FRP composite materials subject to extreme loading
A physically based, finite deformation, rate and temperature dependent theory and model have been developed to simulate the deformation and failure of FRP composite materials and structures. Failure modes include: inter alia, fiber crushing and kinking as occurs during extreme compressive loading; fiber fracture as occurs in for example fragmentation; interlaminar shear as occurs at elevated temperatures and that leads to kinking; debonding and delamination including the coupling with laminate kinking; and debonding as occurs in cored FRP panels. The theory/model is capable of describing quasi-static (including creep) as occurs at elevated temperatures, and dynamic deformation and failure as occurs during shock, blast or impact. The model is implemented within LS DYNA and specific example simulations are described that illustrate the theory/model capabilities. In Part I, fragmentation is not covered in detail. Fiber fracture and fragmentation are to be covered to detail with specific examples in Part II.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信