随机微分方程混合效应模型的粒子方法

Imke Botha, R. Kohn, C. Drovandi
{"title":"随机微分方程混合效应模型的粒子方法","authors":"Imke Botha, R. Kohn, C. Drovandi","doi":"10.1214/20-ba1216","DOIUrl":null,"url":null,"abstract":"Parameter inference for stochastic differential equation mixed effects models (SDEMEMs) is a challenging problem. Analytical solutions for these models are rarely available, which means that the likelihood is also intractable. In this case, exact inference is possible using the pseudo-marginal method, where the intractable likelihood is replaced by its nonnegative unbiased estimate. A useful application of this idea is particle MCMC, which uses a particle filter estimate of the likelihood. While the exact posterior is targeted by these methods, a naive implementation for SDEMEMs can be highly inefficient. We develop three extensions to the naive approach which exploits specific aspects of SDEMEMs and other advances such as correlated pseudo-marginal methods. We compare these methods on real and simulated data from a tumour xenography study on mice.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Particle Methods for Stochastic Differential Equation Mixed Effects Models\",\"authors\":\"Imke Botha, R. Kohn, C. Drovandi\",\"doi\":\"10.1214/20-ba1216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter inference for stochastic differential equation mixed effects models (SDEMEMs) is a challenging problem. Analytical solutions for these models are rarely available, which means that the likelihood is also intractable. In this case, exact inference is possible using the pseudo-marginal method, where the intractable likelihood is replaced by its nonnegative unbiased estimate. A useful application of this idea is particle MCMC, which uses a particle filter estimate of the likelihood. While the exact posterior is targeted by these methods, a naive implementation for SDEMEMs can be highly inefficient. We develop three extensions to the naive approach which exploits specific aspects of SDEMEMs and other advances such as correlated pseudo-marginal methods. We compare these methods on real and simulated data from a tumour xenography study on mice.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ba1216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ba1216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

随机微分方程混合效应模型(SDEMEMs)的参数推断是一个具有挑战性的问题。这些模型的分析解决方案很少可用,这意味着可能性也是难以处理的。在这种情况下,使用伪边际方法可以进行精确推断,其中难以处理的似然被其非负无偏估计所取代。这个想法的一个有用的应用是粒子MCMC,它使用粒子滤波估计可能性。虽然这些方法的目标是精确的后验,但对于SDEMEMs的幼稚实现可能非常低效。我们开发了朴素方法的三个扩展,利用了SDEMEMs的特定方面和其他进展,如相关的伪边际方法。我们比较这些方法的真实和模拟数据从肿瘤异种研究的小鼠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Methods for Stochastic Differential Equation Mixed Effects Models
Parameter inference for stochastic differential equation mixed effects models (SDEMEMs) is a challenging problem. Analytical solutions for these models are rarely available, which means that the likelihood is also intractable. In this case, exact inference is possible using the pseudo-marginal method, where the intractable likelihood is replaced by its nonnegative unbiased estimate. A useful application of this idea is particle MCMC, which uses a particle filter estimate of the likelihood. While the exact posterior is targeted by these methods, a naive implementation for SDEMEMs can be highly inefficient. We develop three extensions to the naive approach which exploits specific aspects of SDEMEMs and other advances such as correlated pseudo-marginal methods. We compare these methods on real and simulated data from a tumour xenography study on mice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信