基于卷积神经网络和分布式计算的晶圆缺陷自动分类

Hairong Lei, Cho-Huak Teh, Hetong Li, Po-Hsuan Lee, Wei Fang
{"title":"基于卷积神经网络和分布式计算的晶圆缺陷自动分类","authors":"Hairong Lei, Cho-Huak Teh, Hetong Li, Po-Hsuan Lee, Wei Fang","doi":"10.1109/ASMC49169.2020.9185253","DOIUrl":null,"url":null,"abstract":"This research compares the traditional machine learning algorithms and deep learning technology. We report our distributed computing convolutional neural network deep learning platform design and results in wafer defect classification. The result shows that the classification accuracy and purity performance is better than that of traditional machine learning models like Random Forest.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"9 9 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated Wafer Defect Classification using a Convolutional Neural Network Augmented with Distributed Computing\",\"authors\":\"Hairong Lei, Cho-Huak Teh, Hetong Li, Po-Hsuan Lee, Wei Fang\",\"doi\":\"10.1109/ASMC49169.2020.9185253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research compares the traditional machine learning algorithms and deep learning technology. We report our distributed computing convolutional neural network deep learning platform design and results in wafer defect classification. The result shows that the classification accuracy and purity performance is better than that of traditional machine learning models like Random Forest.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"9 9 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究比较了传统机器学习算法和深度学习技术。我们报告了分布式计算卷积神经网络深度学习平台的设计和晶圆缺陷分类的结果。结果表明,分类精度和纯度性能优于传统的机器学习模型,如随机森林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Wafer Defect Classification using a Convolutional Neural Network Augmented with Distributed Computing
This research compares the traditional machine learning algorithms and deep learning technology. We report our distributed computing convolutional neural network deep learning platform design and results in wafer defect classification. The result shows that the classification accuracy and purity performance is better than that of traditional machine learning models like Random Forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信