用于储能的VS2/N-rGO纳米复合材料的合成

A. Mandal, S. K. Pandey, Kantimay Das Gupta, S. Chakrabarti
{"title":"用于储能的VS2/N-rGO纳米复合材料的合成","authors":"A. Mandal, S. K. Pandey, Kantimay Das Gupta, S. Chakrabarti","doi":"10.1117/12.2676828","DOIUrl":null,"url":null,"abstract":"Vanadium disulfide (VS2), which belongs to transition metal dichalcogenides (TMDs) group, is a prominent material for energy storage application. On the other hand, graphene like carbon-based nanomaterials offer improved electrochemical performance due to high specific surface area, excellent conductivity, good chemical, and mechanical stability. Therefore, composite of graphene like material with TMD have shown better electrochemical performance till date. In this work, we have synthesized VS2/N-rGO composite material, which can be applicable for energy storage device. At first, we have synthesized graphene oxide (GO) using Tour method. Then we reduced GO along with nitrogen doping using hydrothermal route. After that, we have synthesized VS2/N-rGO by hydrothermal method. The X-ray diffraction (XRD) spectrum of GO shows a prominent peak at 10.2°, which implies the interlayer spacing in GO of 8.7 Å. After reduction and doping with nitrogen (N), two peaks are obtained at 24.7° (d = 3.6 Å), and 42.3° (d = 2.1 Å) in the XRD pattern which corresponds to N-rGO. RAMAN spectrum of composite shows the characteristics peaks of VS2 at 141.6, 194.5, 286.4, 404.1, 680.1 and 997.2 cm-1 along with D and G bands coming from the N-rGO. We have also performed the Fourier-transform infrared-spectroscopy (FTIR) and Field-emission gun-scanning electron-microscopy (FEG-SEM) characterizations to investigate the bonding vibration and surface morphology of the materials. The synthesized material is suitable for energy storage applications.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"128 1","pages":"126510C - 126510C-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of VS2/N-rGO nanocomposite material for energy storage application\",\"authors\":\"A. Mandal, S. K. Pandey, Kantimay Das Gupta, S. Chakrabarti\",\"doi\":\"10.1117/12.2676828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vanadium disulfide (VS2), which belongs to transition metal dichalcogenides (TMDs) group, is a prominent material for energy storage application. On the other hand, graphene like carbon-based nanomaterials offer improved electrochemical performance due to high specific surface area, excellent conductivity, good chemical, and mechanical stability. Therefore, composite of graphene like material with TMD have shown better electrochemical performance till date. In this work, we have synthesized VS2/N-rGO composite material, which can be applicable for energy storage device. At first, we have synthesized graphene oxide (GO) using Tour method. Then we reduced GO along with nitrogen doping using hydrothermal route. After that, we have synthesized VS2/N-rGO by hydrothermal method. The X-ray diffraction (XRD) spectrum of GO shows a prominent peak at 10.2°, which implies the interlayer spacing in GO of 8.7 Å. After reduction and doping with nitrogen (N), two peaks are obtained at 24.7° (d = 3.6 Å), and 42.3° (d = 2.1 Å) in the XRD pattern which corresponds to N-rGO. RAMAN spectrum of composite shows the characteristics peaks of VS2 at 141.6, 194.5, 286.4, 404.1, 680.1 and 997.2 cm-1 along with D and G bands coming from the N-rGO. We have also performed the Fourier-transform infrared-spectroscopy (FTIR) and Field-emission gun-scanning electron-microscopy (FEG-SEM) characterizations to investigate the bonding vibration and surface morphology of the materials. The synthesized material is suitable for energy storage applications.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"128 1\",\"pages\":\"126510C - 126510C-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2676828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二硫化钒(VS2)属于过渡金属二硫族(TMDs),是一种重要的储能材料。另一方面,石墨烯类碳基纳米材料由于其高比表面积、优异的导电性、良好的化学和机械稳定性而提供了改进的电化学性能。因此,到目前为止,类石墨烯材料与TMD的复合材料表现出较好的电化学性能。在这项工作中,我们合成了VS2/N-rGO复合材料,可以应用于储能装置。首先,我们用Tour法合成了氧化石墨烯(GO)。然后采用水热法通过氮掺杂还原氧化石墨烯。然后,我们用水热法合成了VS2/N-rGO。氧化石墨烯的x射线衍射(XRD)谱在10.2°处有一个突出的峰,表明氧化石墨烯的层间间距为8.7 Å。还原后掺杂氮(N), XRD谱图中分别在24.7°(d = 3.6 Å)和42.3°(d = 2.1 Å)处得到两个峰,对应于N- rgo。复合材料的RAMAN光谱显示,VS2的特征峰位于141.6、194.5、286.4、404.1、680.1和997.2 cm-1, D和G波段来自N-rGO。我们还进行了傅里叶变换红外光谱(FTIR)和场发射枪扫描电子显微镜(fg - sem)表征,以研究材料的键合振动和表面形貌。该合成材料适合于储能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of VS2/N-rGO nanocomposite material for energy storage application
Vanadium disulfide (VS2), which belongs to transition metal dichalcogenides (TMDs) group, is a prominent material for energy storage application. On the other hand, graphene like carbon-based nanomaterials offer improved electrochemical performance due to high specific surface area, excellent conductivity, good chemical, and mechanical stability. Therefore, composite of graphene like material with TMD have shown better electrochemical performance till date. In this work, we have synthesized VS2/N-rGO composite material, which can be applicable for energy storage device. At first, we have synthesized graphene oxide (GO) using Tour method. Then we reduced GO along with nitrogen doping using hydrothermal route. After that, we have synthesized VS2/N-rGO by hydrothermal method. The X-ray diffraction (XRD) spectrum of GO shows a prominent peak at 10.2°, which implies the interlayer spacing in GO of 8.7 Å. After reduction and doping with nitrogen (N), two peaks are obtained at 24.7° (d = 3.6 Å), and 42.3° (d = 2.1 Å) in the XRD pattern which corresponds to N-rGO. RAMAN spectrum of composite shows the characteristics peaks of VS2 at 141.6, 194.5, 286.4, 404.1, 680.1 and 997.2 cm-1 along with D and G bands coming from the N-rGO. We have also performed the Fourier-transform infrared-spectroscopy (FTIR) and Field-emission gun-scanning electron-microscopy (FEG-SEM) characterizations to investigate the bonding vibration and surface morphology of the materials. The synthesized material is suitable for energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信