一个基于规则的词干,用于词法丰富的马拉地语

H. Patil, A. Patil
{"title":"一个基于规则的词干,用于词法丰富的马拉地语","authors":"H. Patil, A. Patil","doi":"10.1109/COMPTELIX.2017.8004036","DOIUrl":null,"url":null,"abstract":"Stemming is a technique that transforms morphologically similar terms into a unique term without doing a complete morphological analysis. Stemming is used as a preprocessing step in many Natural Language Processing (NLP) applications like Information retrieval (IR), Machine Translation, Parsing, Summarization, etc. The present work explores the application of stemming to the task of information retrieval. In IR, stemming is generally used for two main purposes: decreasing index size and for increasing system performance. This paper presents a stemmer for Marathi language which uses rule-based technique. The average accuracy achieved by the proposed stemmer is 79.97% when tested on a collection of 4500 unique words from the news corpus among nine runs. Since the accuracy of the proposed stemmer is satisfactory it can be effectively useful in several NLP systems for Marathi language.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"64 1","pages":"580-584"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"MarS: A rule-based stemmer for morphologically rich language Marathi\",\"authors\":\"H. Patil, A. Patil\",\"doi\":\"10.1109/COMPTELIX.2017.8004036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stemming is a technique that transforms morphologically similar terms into a unique term without doing a complete morphological analysis. Stemming is used as a preprocessing step in many Natural Language Processing (NLP) applications like Information retrieval (IR), Machine Translation, Parsing, Summarization, etc. The present work explores the application of stemming to the task of information retrieval. In IR, stemming is generally used for two main purposes: decreasing index size and for increasing system performance. This paper presents a stemmer for Marathi language which uses rule-based technique. The average accuracy achieved by the proposed stemmer is 79.97% when tested on a collection of 4500 unique words from the news corpus among nine runs. Since the accuracy of the proposed stemmer is satisfactory it can be effectively useful in several NLP systems for Marathi language.\",\"PeriodicalId\":6917,\"journal\":{\"name\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"volume\":\"64 1\",\"pages\":\"580-584\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPTELIX.2017.8004036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

词干提取是一种不用进行完整的词形分析就能将词形相似的词转换成独特的词的技术。词干提取在许多自然语言处理(NLP)应用中用作预处理步骤,如信息检索(IR)、机器翻译、解析、摘要等。本文探讨了词干提取在信息检索任务中的应用。在IR中,词干提取通常用于两个主要目的:减少索引大小和提高系统性能。本文提出了一种基于规则的马拉地语词干系统。在9次运行中,对来自新闻语料库的4500个唯一单词进行测试,所提出的词干的平均准确率为79.97%。由于所提出的词干的准确度令人满意,它可以有效地用于几种马拉地语的NLP系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MarS: A rule-based stemmer for morphologically rich language Marathi
Stemming is a technique that transforms morphologically similar terms into a unique term without doing a complete morphological analysis. Stemming is used as a preprocessing step in many Natural Language Processing (NLP) applications like Information retrieval (IR), Machine Translation, Parsing, Summarization, etc. The present work explores the application of stemming to the task of information retrieval. In IR, stemming is generally used for two main purposes: decreasing index size and for increasing system performance. This paper presents a stemmer for Marathi language which uses rule-based technique. The average accuracy achieved by the proposed stemmer is 79.97% when tested on a collection of 4500 unique words from the news corpus among nine runs. Since the accuracy of the proposed stemmer is satisfactory it can be effectively useful in several NLP systems for Marathi language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信