{"title":"锌和碳掺杂对退火后InGaAs/AlGaAs量子阱激光结构原子间扩散的影响","authors":"P. Gareso","doi":"10.5614/itb.ijp.2009.20.2.1","DOIUrl":null,"url":null,"abstract":"We have compared a zinc and a carbon doped on the atomic interdiffusion of InGaAs/AlGaAs after annealing using Electrochemical capacitance voltage (EC-V), X-ray diffraction and photoluminescence (PL) measurements. Electrochemical capacitance voltage measurements revealed that the carrier concentration in the Zn-doped p++GaAs contact layers decreased after annealing at 900oC for 60 sec, indicating that some of the Zn acceptors were passivated or outdiffused from the surface. In contrast to the C-doped samples, an increase of carrier concentration was observed after annealing. X-ray rocking curve confirmed this result where the amount of lattice contraction increase after annealing which is attributed to the presence of the substitutional carbon CAs. Photoluminescence results showed that a large energy shift was observed in the Zn-doped samples compare with C- doped samples. Photoluminescence measurements after etching to various depth showed similar luminescence defects in both Zn- and C-doped samples. Photocurrent measurements showed the quality of quantum well was improve after annealing in C-doped samples due to activation of carbon doped.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Zinc and Carbon Doped on the Atomic Interdiffusion of InGaAs/AlGaAs Quantum Wells Laser Structures After Annealing\",\"authors\":\"P. Gareso\",\"doi\":\"10.5614/itb.ijp.2009.20.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have compared a zinc and a carbon doped on the atomic interdiffusion of InGaAs/AlGaAs after annealing using Electrochemical capacitance voltage (EC-V), X-ray diffraction and photoluminescence (PL) measurements. Electrochemical capacitance voltage measurements revealed that the carrier concentration in the Zn-doped p++GaAs contact layers decreased after annealing at 900oC for 60 sec, indicating that some of the Zn acceptors were passivated or outdiffused from the surface. In contrast to the C-doped samples, an increase of carrier concentration was observed after annealing. X-ray rocking curve confirmed this result where the amount of lattice contraction increase after annealing which is attributed to the presence of the substitutional carbon CAs. Photoluminescence results showed that a large energy shift was observed in the Zn-doped samples compare with C- doped samples. Photoluminescence measurements after etching to various depth showed similar luminescence defects in both Zn- and C-doped samples. Photocurrent measurements showed the quality of quantum well was improve after annealing in C-doped samples due to activation of carbon doped.\",\"PeriodicalId\":13535,\"journal\":{\"name\":\"Indonesian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itb.ijp.2009.20.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2009.20.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of Zinc and Carbon Doped on the Atomic Interdiffusion of InGaAs/AlGaAs Quantum Wells Laser Structures After Annealing
We have compared a zinc and a carbon doped on the atomic interdiffusion of InGaAs/AlGaAs after annealing using Electrochemical capacitance voltage (EC-V), X-ray diffraction and photoluminescence (PL) measurements. Electrochemical capacitance voltage measurements revealed that the carrier concentration in the Zn-doped p++GaAs contact layers decreased after annealing at 900oC for 60 sec, indicating that some of the Zn acceptors were passivated or outdiffused from the surface. In contrast to the C-doped samples, an increase of carrier concentration was observed after annealing. X-ray rocking curve confirmed this result where the amount of lattice contraction increase after annealing which is attributed to the presence of the substitutional carbon CAs. Photoluminescence results showed that a large energy shift was observed in the Zn-doped samples compare with C- doped samples. Photoluminescence measurements after etching to various depth showed similar luminescence defects in both Zn- and C-doped samples. Photocurrent measurements showed the quality of quantum well was improve after annealing in C-doped samples due to activation of carbon doped.