四种生物柴油替代品在柴油0D现象学建模中的应用比较数值研究

IF 1.5 Q3 ENGINEERING, CHEMICAL
Claude Valéry Ngayihi Abbe, R. Danwe, R. Nzengwa
{"title":"四种生物柴油替代品在柴油0D现象学建模中的应用比较数值研究","authors":"Claude Valéry Ngayihi Abbe, R. Danwe, R. Nzengwa","doi":"10.1155/2016/3714913","DOIUrl":null,"url":null,"abstract":"To meet more stringent norms and standards concerning engine performances and emissions, engine manufacturers need to develop new technologies enhancing the nonpolluting properties of the fuels. In that sense, the testing and development of alternative fuels such as biodiesel are of great importance. Fuel testing is nowadays a matter of experimental and numerical work. Researches on diesel engine’s fuel involve the use of surrogates, for which the combustion mechanisms are well known and relatively similar to the investigated fuel. Biodiesel, due to its complex molecular configuration, is still the subject of numerous investigations in that area. This study presents the comparison of four biodiesel surrogates, methyl-butanoate, ethyl-butyrate, methyl-decanoate, and methyl-9-decenoate, in a 0D phenomenological combustion model. They were investigated for in-cylinder pressure, thermal efficiency, and emissions. Experiments were performed on a six-cylinder turbocharged DI diesel engine fuelled by methyl ester (MEB) and ethyl ester (EEB) biodiesel from wasted frying oil. Results showed that, among the four surrogates, methyl butanoate presented better results for all the studied parameters. In-cylinder pressure and thermal efficiency were predicted with good accuracy by the four surrogates. emissions were well predicted for methyl butanoate but for the other three gave approximation errors over 50%.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparative Numerical Study of Four Biodiesel Surrogates for Application on Diesel 0D Phenomenological Modeling\",\"authors\":\"Claude Valéry Ngayihi Abbe, R. Danwe, R. Nzengwa\",\"doi\":\"10.1155/2016/3714913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet more stringent norms and standards concerning engine performances and emissions, engine manufacturers need to develop new technologies enhancing the nonpolluting properties of the fuels. In that sense, the testing and development of alternative fuels such as biodiesel are of great importance. Fuel testing is nowadays a matter of experimental and numerical work. Researches on diesel engine’s fuel involve the use of surrogates, for which the combustion mechanisms are well known and relatively similar to the investigated fuel. Biodiesel, due to its complex molecular configuration, is still the subject of numerous investigations in that area. This study presents the comparison of four biodiesel surrogates, methyl-butanoate, ethyl-butyrate, methyl-decanoate, and methyl-9-decenoate, in a 0D phenomenological combustion model. They were investigated for in-cylinder pressure, thermal efficiency, and emissions. Experiments were performed on a six-cylinder turbocharged DI diesel engine fuelled by methyl ester (MEB) and ethyl ester (EEB) biodiesel from wasted frying oil. Results showed that, among the four surrogates, methyl butanoate presented better results for all the studied parameters. In-cylinder pressure and thermal efficiency were predicted with good accuracy by the four surrogates. emissions were well predicted for methyl butanoate but for the other three gave approximation errors over 50%.\",\"PeriodicalId\":44364,\"journal\":{\"name\":\"Journal of Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/3714913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/3714913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4

摘要

为了满足有关发动机性能和排放的更严格的规范和标准,发动机制造商需要开发新技术来提高燃料的无污染性能。从这个意义上说,测试和开发生物柴油等替代燃料是非常重要的。目前燃料测试是一个实验和数值工作的问题。柴油机燃料的研究涉及到使用替代燃料,这些替代燃料的燃烧机制是众所周知的,并且与所研究的燃料相对相似。生物柴油由于其复杂的分子结构,仍然是该领域众多研究的主题。本研究比较了四种生物柴油替代物,丁酸甲酯、丁酸乙酯、癸酸甲酯和9-癸酸甲酯,在0 -d现象燃烧模型中。他们的缸内压力,热效率和排放进行了调查。以废弃煎炸油制备的甲酯(MEB)和乙酯(EEB)生物柴油为燃料,在一台六缸涡轮增压直喷式柴油机上进行了试验。结果表明,在4种替代物中,丁酸甲酯对所有研究参数的效果都较好。四种替代方法均能较好地预测缸内压力和热效率。丁酸甲酯的排放量预测得很好,但其他三种的近似误差超过50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Numerical Study of Four Biodiesel Surrogates for Application on Diesel 0D Phenomenological Modeling
To meet more stringent norms and standards concerning engine performances and emissions, engine manufacturers need to develop new technologies enhancing the nonpolluting properties of the fuels. In that sense, the testing and development of alternative fuels such as biodiesel are of great importance. Fuel testing is nowadays a matter of experimental and numerical work. Researches on diesel engine’s fuel involve the use of surrogates, for which the combustion mechanisms are well known and relatively similar to the investigated fuel. Biodiesel, due to its complex molecular configuration, is still the subject of numerous investigations in that area. This study presents the comparison of four biodiesel surrogates, methyl-butanoate, ethyl-butyrate, methyl-decanoate, and methyl-9-decenoate, in a 0D phenomenological combustion model. They were investigated for in-cylinder pressure, thermal efficiency, and emissions. Experiments were performed on a six-cylinder turbocharged DI diesel engine fuelled by methyl ester (MEB) and ethyl ester (EEB) biodiesel from wasted frying oil. Results showed that, among the four surrogates, methyl butanoate presented better results for all the studied parameters. In-cylinder pressure and thermal efficiency were predicted with good accuracy by the four surrogates. emissions were well predicted for methyl butanoate but for the other three gave approximation errors over 50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信