基于卷积- lstm的音乐生成

Yongjie Huang, Xiaofeng Huang, Qiakai Cai
{"title":"基于卷积- lstm的音乐生成","authors":"Yongjie Huang, Xiaofeng Huang, Qiakai Cai","doi":"10.5539/cis.v11n3p50","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a model that combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for music generation. We first convert MIDI-format music file into a musical score matrix, and then establish convolution layers to extract feature of the musical score matrix. Finally, the output of the convolution layers is split in the direction of the time axis and input into the LSTM, so as to achieve the purpose of music generation. The result of the model was verified by comparison of accuracy, time-domain analysis, frequency-domain analysis and human-auditory evaluation. The results show that Convolution-LSTM performs better in music genertaion than LSTM, with more pronounced undulations and clearer melody.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"20 1","pages":"50-56"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Music Generation Based on Convolution-LSTM\",\"authors\":\"Yongjie Huang, Xiaofeng Huang, Qiakai Cai\",\"doi\":\"10.5539/cis.v11n3p50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a model that combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for music generation. We first convert MIDI-format music file into a musical score matrix, and then establish convolution layers to extract feature of the musical score matrix. Finally, the output of the convolution layers is split in the direction of the time axis and input into the LSTM, so as to achieve the purpose of music generation. The result of the model was verified by comparison of accuracy, time-domain analysis, frequency-domain analysis and human-auditory evaluation. The results show that Convolution-LSTM performs better in music genertaion than LSTM, with more pronounced undulations and clearer melody.\",\"PeriodicalId\":14676,\"journal\":{\"name\":\"J. Chem. Inf. Comput. Sci.\",\"volume\":\"20 1\",\"pages\":\"50-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Chem. Inf. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v11n3p50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v11n3p50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了一个结合卷积神经网络(CNN)和长短期记忆(LSTM)的音乐生成模型。首先将midi格式的音乐文件转换成乐谱矩阵,然后建立卷积层提取乐谱矩阵的特征。最后,将卷积层的输出沿时间轴方向进行分割,输入到LSTM中,从而达到音乐生成的目的。通过准确度、时域分析、频域分析和人听觉评价的比较,验证了模型的正确性。结果表明,与LSTM相比,卷积-LSTM在音乐生成方面表现更好,具有更明显的波动和更清晰的旋律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music Generation Based on Convolution-LSTM
In this paper, we propose a model that combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for music generation. We first convert MIDI-format music file into a musical score matrix, and then establish convolution layers to extract feature of the musical score matrix. Finally, the output of the convolution layers is split in the direction of the time axis and input into the LSTM, so as to achieve the purpose of music generation. The result of the model was verified by comparison of accuracy, time-domain analysis, frequency-domain analysis and human-auditory evaluation. The results show that Convolution-LSTM performs better in music genertaion than LSTM, with more pronounced undulations and clearer melody.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信