基于快速迭代自适应技术的单快照波束形成

A. Hassanien, E. Aboutanios
{"title":"基于快速迭代自适应技术的单快照波束形成","authors":"A. Hassanien, E. Aboutanios","doi":"10.1109/SAM48682.2020.9104350","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of adaptive beamforming for sample-starved scenarios. A beamforming design method is developed for the case when the only available data is a single-snapshot that is contaminated by the signal-of-interest. Instead of using the non-invertible rank-one sample covariance matrix, the proposed method reconstructs the interference-plus-noise covariance matrix via estimating the interference signal component(s) and the noise variance. The computationally-efficient fast iterative interpolated beamforming (FIIB) algorithm is used to estimate the spatial frequencies and complex amplitudes associated with the interference. The reconstructed covariance matrix is used for adaptive beamforming design. Unlike existing sparsity-based covariance reconstruction techniques, the proposed method is able to reconstruct off-grid interference components and its performance is shown to not suffer from estimation bias. Simulation examples are used to demonstrate the performance superiority of the proposed method over other adaptive single-snapshot beamforming techniques.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"57 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single-Snapshot Beamforming using Fast Iterative Adaptive Techniques\",\"authors\":\"A. Hassanien, E. Aboutanios\",\"doi\":\"10.1109/SAM48682.2020.9104350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of adaptive beamforming for sample-starved scenarios. A beamforming design method is developed for the case when the only available data is a single-snapshot that is contaminated by the signal-of-interest. Instead of using the non-invertible rank-one sample covariance matrix, the proposed method reconstructs the interference-plus-noise covariance matrix via estimating the interference signal component(s) and the noise variance. The computationally-efficient fast iterative interpolated beamforming (FIIB) algorithm is used to estimate the spatial frequencies and complex amplitudes associated with the interference. The reconstructed covariance matrix is used for adaptive beamforming design. Unlike existing sparsity-based covariance reconstruction techniques, the proposed method is able to reconstruct off-grid interference components and its performance is shown to not suffer from estimation bias. Simulation examples are used to demonstrate the performance superiority of the proposed method over other adaptive single-snapshot beamforming techniques.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"57 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了样本匮乏情况下的自适应波束形成问题。针对受感兴趣信号污染的单快照数据,提出了一种波束形成设计方法。该方法不使用不可逆的秩一样本协方差矩阵,而是通过估计干扰信号分量和噪声方差来重建干扰加噪声协方差矩阵。采用计算效率高的快速迭代插值波束形成(FIIB)算法来估计与干扰相关的空间频率和复幅。将重构的协方差矩阵用于自适应波束形成设计。与现有的基于稀疏性的协方差重建技术不同,该方法能够重建离网干扰分量,且其性能不受估计偏差的影响。仿真结果表明,该方法优于其他自适应单快照波束形成技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Snapshot Beamforming using Fast Iterative Adaptive Techniques
In this paper, we consider the problem of adaptive beamforming for sample-starved scenarios. A beamforming design method is developed for the case when the only available data is a single-snapshot that is contaminated by the signal-of-interest. Instead of using the non-invertible rank-one sample covariance matrix, the proposed method reconstructs the interference-plus-noise covariance matrix via estimating the interference signal component(s) and the noise variance. The computationally-efficient fast iterative interpolated beamforming (FIIB) algorithm is used to estimate the spatial frequencies and complex amplitudes associated with the interference. The reconstructed covariance matrix is used for adaptive beamforming design. Unlike existing sparsity-based covariance reconstruction techniques, the proposed method is able to reconstruct off-grid interference components and its performance is shown to not suffer from estimation bias. Simulation examples are used to demonstrate the performance superiority of the proposed method over other adaptive single-snapshot beamforming techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信