命题的把握与消去

Faraz Ghalbi
{"title":"命题的把握与消去","authors":"Faraz Ghalbi","doi":"10.1017/s0012217323000124","DOIUrl":null,"url":null,"abstract":"\n Recently, Indrek Reiland proposed a new version of the act-type theory of propositions (ATT) in which predication is still committal. However, the Frege-Geach problem can be addressed without resorting to Peter Hanks's cancellation manoeuvre. In this article, I argue that if we take predication as a committal act, we will then have to tackle another problem: non-committal representational acts. I argue that Reiland still needs a notion of cancellation to deal with the latter problem. On this account, he cannot avoid the major flaw he attributes to Hanks's version.","PeriodicalId":84592,"journal":{"name":"Diarrhoea Dialogue","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grasping a Proposition and Cancellation\",\"authors\":\"Faraz Ghalbi\",\"doi\":\"10.1017/s0012217323000124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recently, Indrek Reiland proposed a new version of the act-type theory of propositions (ATT) in which predication is still committal. However, the Frege-Geach problem can be addressed without resorting to Peter Hanks's cancellation manoeuvre. In this article, I argue that if we take predication as a committal act, we will then have to tackle another problem: non-committal representational acts. I argue that Reiland still needs a notion of cancellation to deal with the latter problem. On this account, he cannot avoid the major flaw he attributes to Hanks's version.\",\"PeriodicalId\":84592,\"journal\":{\"name\":\"Diarrhoea Dialogue\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diarrhoea Dialogue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0012217323000124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diarrhoea Dialogue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0012217323000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,Indrek Reiland提出了一个新版本的行为类型命题理论(ATT),其中预测仍然是承诺的。然而,弗雷格-里奇的问题可以不用诉诸彼得·汉克斯的取消策略来解决。在本文中,我认为,如果我们将预测视为一种承诺行为,那么我们将不得不解决另一个问题:非承诺的代表性行为。我认为,赖兰仍然需要一个取消的概念来处理后一个问题。因此,他无法避免汉克斯版本的主要缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grasping a Proposition and Cancellation
Recently, Indrek Reiland proposed a new version of the act-type theory of propositions (ATT) in which predication is still committal. However, the Frege-Geach problem can be addressed without resorting to Peter Hanks's cancellation manoeuvre. In this article, I argue that if we take predication as a committal act, we will then have to tackle another problem: non-committal representational acts. I argue that Reiland still needs a notion of cancellation to deal with the latter problem. On this account, he cannot avoid the major flaw he attributes to Hanks's version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信