基于SubNyquist采样和二阶统计量的能量宽带频谱传感

E. Astaiza, Pablo E. Jojoa, Francisco Novillo
{"title":"基于SubNyquist采样和二阶统计量的能量宽带频谱传感","authors":"E. Astaiza, Pablo E. Jojoa, Francisco Novillo","doi":"10.1109/ETCM.2016.7750834","DOIUrl":null,"url":null,"abstract":"In this paper, a novel wideband spectrum sensing algorithm based on Compressive Sensing (CS) and reconstruction of second order signal statistics from covariance matrix of the acquired samples for Cognitive Radio (CR) systems is presented. This allows cognitive users to sense the spectrum without apriori knowledge of signal characteristics in the radio environment by minimizing the amount of samples to be processed. Simulation results show that the proposed algorithm allows to sense the spectrum efficiently, improving the performance in terms of detection probability, false alarm probability and miss detection probability regarding previously proposed algorithms.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"29 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy wideband spectrum sensing based on SubNyquist sampling and second order statistics\",\"authors\":\"E. Astaiza, Pablo E. Jojoa, Francisco Novillo\",\"doi\":\"10.1109/ETCM.2016.7750834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel wideband spectrum sensing algorithm based on Compressive Sensing (CS) and reconstruction of second order signal statistics from covariance matrix of the acquired samples for Cognitive Radio (CR) systems is presented. This allows cognitive users to sense the spectrum without apriori knowledge of signal characteristics in the radio environment by minimizing the amount of samples to be processed. Simulation results show that the proposed algorithm allows to sense the spectrum efficiently, improving the performance in terms of detection probability, false alarm probability and miss detection probability regarding previously proposed algorithms.\",\"PeriodicalId\":6480,\"journal\":{\"name\":\"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)\",\"volume\":\"29 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCM.2016.7750834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于压缩感知(CS)和从采集样本协方差矩阵重构二阶信号统计量的认知无线电(CR)系统宽带频谱感知算法。这允许认知用户通过最小化待处理的样品量来感知频谱,而无需对无线电环境中的信号特性有先验知识。仿真结果表明,本文提出的算法能够有效地感知频谱,在检测概率、虚警概率和漏检概率方面都比以往提出的算法有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy wideband spectrum sensing based on SubNyquist sampling and second order statistics
In this paper, a novel wideband spectrum sensing algorithm based on Compressive Sensing (CS) and reconstruction of second order signal statistics from covariance matrix of the acquired samples for Cognitive Radio (CR) systems is presented. This allows cognitive users to sense the spectrum without apriori knowledge of signal characteristics in the radio environment by minimizing the amount of samples to be processed. Simulation results show that the proposed algorithm allows to sense the spectrum efficiently, improving the performance in terms of detection probability, false alarm probability and miss detection probability regarding previously proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信