{"title":"集合后验线性回归自适应","authors":"Jen-Tzung Chien, Chih-Hsien Huang","doi":"10.1109/TSA.2005.860847","DOIUrl":null,"url":null,"abstract":"We present a new discriminative linear regression adaptation algorithm for hidden Markov model (HMM) based speech recognition. The cluster-dependent regression matrices are estimated from speaker-specific adaptation data through maximizing the aggregate a posteriori probability, which can be expressed in a form of classification error function adopting the logarithm of posterior distribution as the discriminant function. Accordingly, the aggregate a posteriori linear regression (AAPLR) is developed for discriminative adaptation where the classification errors of adaptation data are minimized. Because the prior distribution of regression matrix is involved, AAPLR is geared with the Bayesian learning capability. We demonstrate that the difference between AAPLR discriminative adaptation and maximum a posteriori linear regression (MAPLR) adaptation is due to the treatment of the evidence. Different from minimum classification error linear regression (MCELR), AAPLR has closed-form solution to fulfil rapid adaptation. Experimental results reveal that AAPLR speaker adaptation does improve speech recognition performance with moderate computational cost compared to maximum likelihood linear regression (MLLR), MAPLR, MCELR and conditional maximum likelihood linear regression (CMLLR). These results are verified for supervised adaptation as well as unsupervised adaptation for different numbers of adaptation data.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"12 5 1","pages":"797-807"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Aggregate a posteriori linear regression adaptation\",\"authors\":\"Jen-Tzung Chien, Chih-Hsien Huang\",\"doi\":\"10.1109/TSA.2005.860847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new discriminative linear regression adaptation algorithm for hidden Markov model (HMM) based speech recognition. The cluster-dependent regression matrices are estimated from speaker-specific adaptation data through maximizing the aggregate a posteriori probability, which can be expressed in a form of classification error function adopting the logarithm of posterior distribution as the discriminant function. Accordingly, the aggregate a posteriori linear regression (AAPLR) is developed for discriminative adaptation where the classification errors of adaptation data are minimized. Because the prior distribution of regression matrix is involved, AAPLR is geared with the Bayesian learning capability. We demonstrate that the difference between AAPLR discriminative adaptation and maximum a posteriori linear regression (MAPLR) adaptation is due to the treatment of the evidence. Different from minimum classification error linear regression (MCELR), AAPLR has closed-form solution to fulfil rapid adaptation. Experimental results reveal that AAPLR speaker adaptation does improve speech recognition performance with moderate computational cost compared to maximum likelihood linear regression (MLLR), MAPLR, MCELR and conditional maximum likelihood linear regression (CMLLR). These results are verified for supervised adaptation as well as unsupervised adaptation for different numbers of adaptation data.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"12 5 1\",\"pages\":\"797-807\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2005.860847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2005.860847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aggregate a posteriori linear regression adaptation
We present a new discriminative linear regression adaptation algorithm for hidden Markov model (HMM) based speech recognition. The cluster-dependent regression matrices are estimated from speaker-specific adaptation data through maximizing the aggregate a posteriori probability, which can be expressed in a form of classification error function adopting the logarithm of posterior distribution as the discriminant function. Accordingly, the aggregate a posteriori linear regression (AAPLR) is developed for discriminative adaptation where the classification errors of adaptation data are minimized. Because the prior distribution of regression matrix is involved, AAPLR is geared with the Bayesian learning capability. We demonstrate that the difference between AAPLR discriminative adaptation and maximum a posteriori linear regression (MAPLR) adaptation is due to the treatment of the evidence. Different from minimum classification error linear regression (MCELR), AAPLR has closed-form solution to fulfil rapid adaptation. Experimental results reveal that AAPLR speaker adaptation does improve speech recognition performance with moderate computational cost compared to maximum likelihood linear regression (MLLR), MAPLR, MCELR and conditional maximum likelihood linear regression (CMLLR). These results are verified for supervised adaptation as well as unsupervised adaptation for different numbers of adaptation data.