{"title":"希尔伯特空间中Sobolev型$ \\psi - $Hilfer分数阶后向微扰积分微分方程的可控性结果","authors":"Ichrak Bouacida, Mourad Kerboua, S. Segni","doi":"10.3934/eect.2022028","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, the approximate controllability for Sobolev type <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\psi - $\\end{document}</tex-math></inline-formula> Hilfer fractional backward perturbed integro-differential equations with <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\psi - $\\end{document}</tex-math></inline-formula> fractional non local conditions in a Hilbert space are studied. A new set of sufficient conditions are established by using semigroup theory, <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\psi - $\\end{document}</tex-math></inline-formula>Hilfer fractional calculus and the Schauder's fixed point theorem. The results are obtained under the assumption that the associate backward <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\psi - $\\end{document}</tex-math></inline-formula> fractional linear system is approximately controllable. Finally, an example is given to illustrate the obtained results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Controllability results for Sobolev type $ \\\\psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space\",\"authors\":\"Ichrak Bouacida, Mourad Kerboua, S. Segni\",\"doi\":\"10.3934/eect.2022028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, the approximate controllability for Sobolev type <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\psi - $\\\\end{document}</tex-math></inline-formula> Hilfer fractional backward perturbed integro-differential equations with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\psi - $\\\\end{document}</tex-math></inline-formula> fractional non local conditions in a Hilbert space are studied. A new set of sufficient conditions are established by using semigroup theory, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\psi - $\\\\end{document}</tex-math></inline-formula>Hilfer fractional calculus and the Schauder's fixed point theorem. The results are obtained under the assumption that the associate backward <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\psi - $\\\\end{document}</tex-math></inline-formula> fractional linear system is approximately controllable. Finally, an example is given to illustrate the obtained results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
摘要
In this paper, the approximate controllability for Sobolev type \begin{document}$ \psi - $\end{document} Hilfer fractional backward perturbed integro-differential equations with \begin{document}$ \psi - $\end{document} fractional non local conditions in a Hilbert space are studied. A new set of sufficient conditions are established by using semigroup theory, \begin{document}$ \psi - $\end{document}Hilfer fractional calculus and the Schauder's fixed point theorem. The results are obtained under the assumption that the associate backward \begin{document}$ \psi - $\end{document} fractional linear system is approximately controllable. Finally, an example is given to illustrate the obtained results.
Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space
In this paper, the approximate controllability for Sobolev type \begin{document}$ \psi - $\end{document} Hilfer fractional backward perturbed integro-differential equations with \begin{document}$ \psi - $\end{document} fractional non local conditions in a Hilbert space are studied. A new set of sufficient conditions are established by using semigroup theory, \begin{document}$ \psi - $\end{document}Hilfer fractional calculus and the Schauder's fixed point theorem. The results are obtained under the assumption that the associate backward \begin{document}$ \psi - $\end{document} fractional linear system is approximately controllable. Finally, an example is given to illustrate the obtained results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.