开放排队网络中极端队列长度的迭代对数律

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
S. Minkevičius, L. Sakalauskas
{"title":"开放排队网络中极端队列长度的迭代对数律","authors":"S. Minkevičius, L. Sakalauskas","doi":"10.1080/23799927.2021.1969432","DOIUrl":null,"url":null,"abstract":"The purpose of this research in the field of the open queueing network is to prove the Law of the Iterated Logarithm (LIL) for the extreme value of the queue length of customers in an open queueing network. LIL is proved for the extreme values of the queue length of customers the important probability characteristic of the queueing system under conditions of heavy traffic. Also, we present for extreme queue length of jobs Probability Laws ((theorems on the LIL, Fluid Limits Theorem and Diffusion Limit Theorem) in various conditions of traffic and simulating an open queueing network in Appendices 1 and 2.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the law of iterated logarithm for extreme queue length in an open queueing network\",\"authors\":\"S. Minkevičius, L. Sakalauskas\",\"doi\":\"10.1080/23799927.2021.1969432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research in the field of the open queueing network is to prove the Law of the Iterated Logarithm (LIL) for the extreme value of the queue length of customers in an open queueing network. LIL is proved for the extreme values of the queue length of customers the important probability characteristic of the queueing system under conditions of heavy traffic. Also, we present for extreme queue length of jobs Probability Laws ((theorems on the LIL, Fluid Limits Theorem and Diffusion Limit Theorem) in various conditions of traffic and simulating an open queueing network in Appendices 1 and 2.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2021.1969432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2021.1969432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

本文在开放排队网络领域进行研究的目的是证明开放排队网络中顾客排队长度极值的迭代对数定律。证明了大流量条件下排队系统的重要概率特征——顾客排队长度的极值。此外,在附录1和附录2中,我们给出了各种交通条件下作业的极端排队长度的概率律(LIL定理、流体极限定理和扩散极限定理),并模拟了一个开放排队网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the law of iterated logarithm for extreme queue length in an open queueing network
The purpose of this research in the field of the open queueing network is to prove the Law of the Iterated Logarithm (LIL) for the extreme value of the queue length of customers in an open queueing network. LIL is proved for the extreme values of the queue length of customers the important probability characteristic of the queueing system under conditions of heavy traffic. Also, we present for extreme queue length of jobs Probability Laws ((theorems on the LIL, Fluid Limits Theorem and Diffusion Limit Theorem) in various conditions of traffic and simulating an open queueing network in Appendices 1 and 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信