{"title":"弱消序图上全k域划分和全r支配的复杂性","authors":"Chuan-Min Lee","doi":"10.1080/23799927.2020.1771427","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two linear-time algorithms. One is for computing a weak elimination ordering of a bipartite distance-hereditary graph, and the other one is an alternative algorithm to solve the total R-domination problem for any chordal bipartite graph with a weak elimination ordering. Our two linear-time algorithms lead to a unified approach to several variations of total domination problems for bipartite distance-hereditary graphs. We also show that tthe total 3-domatic partition problem is NP-complete for planar graphs of maximum degree 9 and planar bipartite graphs of maximum degree 12, and show that the 4-domatic partition problem for planar graphs of maximum degree d is polynomial-time reducible to the total 4-domatic partition problem for planar graphs of maximum degree d + 1.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of total k-domatic partition and total R-domination on graphs with weak elimination orderings\",\"authors\":\"Chuan-Min Lee\",\"doi\":\"10.1080/23799927.2020.1771427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two linear-time algorithms. One is for computing a weak elimination ordering of a bipartite distance-hereditary graph, and the other one is an alternative algorithm to solve the total R-domination problem for any chordal bipartite graph with a weak elimination ordering. Our two linear-time algorithms lead to a unified approach to several variations of total domination problems for bipartite distance-hereditary graphs. We also show that tthe total 3-domatic partition problem is NP-complete for planar graphs of maximum degree 9 and planar bipartite graphs of maximum degree 12, and show that the 4-domatic partition problem for planar graphs of maximum degree d is polynomial-time reducible to the total 4-domatic partition problem for planar graphs of maximum degree d + 1.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2020.1771427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1771427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The complexity of total k-domatic partition and total R-domination on graphs with weak elimination orderings
In this paper, we propose two linear-time algorithms. One is for computing a weak elimination ordering of a bipartite distance-hereditary graph, and the other one is an alternative algorithm to solve the total R-domination problem for any chordal bipartite graph with a weak elimination ordering. Our two linear-time algorithms lead to a unified approach to several variations of total domination problems for bipartite distance-hereditary graphs. We also show that tthe total 3-domatic partition problem is NP-complete for planar graphs of maximum degree 9 and planar bipartite graphs of maximum degree 12, and show that the 4-domatic partition problem for planar graphs of maximum degree d is polynomial-time reducible to the total 4-domatic partition problem for planar graphs of maximum degree d + 1.