弱消序图上全k域划分和全r支配的复杂性

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Chuan-Min Lee
{"title":"弱消序图上全k域划分和全r支配的复杂性","authors":"Chuan-Min Lee","doi":"10.1080/23799927.2020.1771427","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two linear-time algorithms. One is for computing a weak elimination ordering of a bipartite distance-hereditary graph, and the other one is an alternative algorithm to solve the total R-domination problem for any chordal bipartite graph with a weak elimination ordering. Our two linear-time algorithms lead to a unified approach to several variations of total domination problems for bipartite distance-hereditary graphs. We also show that tthe total 3-domatic partition problem is NP-complete for planar graphs of maximum degree 9 and planar bipartite graphs of maximum degree 12, and show that the 4-domatic partition problem for planar graphs of maximum degree d is polynomial-time reducible to the total 4-domatic partition problem for planar graphs of maximum degree d + 1.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of total k-domatic partition and total R-domination on graphs with weak elimination orderings\",\"authors\":\"Chuan-Min Lee\",\"doi\":\"10.1080/23799927.2020.1771427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two linear-time algorithms. One is for computing a weak elimination ordering of a bipartite distance-hereditary graph, and the other one is an alternative algorithm to solve the total R-domination problem for any chordal bipartite graph with a weak elimination ordering. Our two linear-time algorithms lead to a unified approach to several variations of total domination problems for bipartite distance-hereditary graphs. We also show that tthe total 3-domatic partition problem is NP-complete for planar graphs of maximum degree 9 and planar bipartite graphs of maximum degree 12, and show that the 4-domatic partition problem for planar graphs of maximum degree d is polynomial-time reducible to the total 4-domatic partition problem for planar graphs of maximum degree d + 1.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2020.1771427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1771427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种线性时间算法。一种是计算二部距离遗传图的弱消序,另一种是求解任何具有弱消序的弦二部图的全r控制问题的替代算法。我们的两种线性时间算法对二部距离遗传图的几种总控制问题给出了统一的解决方法。我们还证明了最大次为9的平面图和最大次为12的平面二部图的总3-域划分问题是np完全的,并证明了最大次为d的平面图的4-域划分问题在多项式时间上可约化为最大次为d + 1的平面图的总4-域划分问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of total k-domatic partition and total R-domination on graphs with weak elimination orderings
In this paper, we propose two linear-time algorithms. One is for computing a weak elimination ordering of a bipartite distance-hereditary graph, and the other one is an alternative algorithm to solve the total R-domination problem for any chordal bipartite graph with a weak elimination ordering. Our two linear-time algorithms lead to a unified approach to several variations of total domination problems for bipartite distance-hereditary graphs. We also show that tthe total 3-domatic partition problem is NP-complete for planar graphs of maximum degree 9 and planar bipartite graphs of maximum degree 12, and show that the 4-domatic partition problem for planar graphs of maximum degree d is polynomial-time reducible to the total 4-domatic partition problem for planar graphs of maximum degree d + 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信