等式约束的全局共识问题的几何

Qiuwei Li, Zhihui Zhu, Gongguo Tang, M. Wakin
{"title":"等式约束的全局共识问题的几何","authors":"Qiuwei Li, Zhihui Zhu, Gongguo Tang, M. Wakin","doi":"10.1109/ICASSP.2019.8682568","DOIUrl":null,"url":null,"abstract":"A variety of unconstrained nonconvex optimization problems have been shown to have benign geometric landscapes that satisfy the strict saddle property and have no spurious local minima. We present a general result relating the geometry of an unconstrained centralized problem to its equality-constrained distributed extension. It follows that many global consensus problems inherit the benign geometry of their original centralized counterpart. Taking advantage of this fact, we demonstrate the favorable performance of the Gradient ADMM algorithm on a distributed low-rank matrix approximation problem.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"19 1","pages":"7928-7932"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Geometry of Equality-constrained Global Consensus Problems\",\"authors\":\"Qiuwei Li, Zhihui Zhu, Gongguo Tang, M. Wakin\",\"doi\":\"10.1109/ICASSP.2019.8682568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of unconstrained nonconvex optimization problems have been shown to have benign geometric landscapes that satisfy the strict saddle property and have no spurious local minima. We present a general result relating the geometry of an unconstrained centralized problem to its equality-constrained distributed extension. It follows that many global consensus problems inherit the benign geometry of their original centralized counterpart. Taking advantage of this fact, we demonstrate the favorable performance of the Gradient ADMM algorithm on a distributed low-rank matrix approximation problem.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"19 1\",\"pages\":\"7928-7932\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

各种无约束非凸优化问题已被证明具有良好的几何景观,满足严格鞍形性质,不存在虚假的局部最小值。给出了一个无约束集中问题几何与其等式约束分布扩展的一般结果。因此,许多全局共识问题继承了其原始中心化对应的良性几何结构。利用这一事实,我们证明了梯度ADMM算法在分布式低秩矩阵逼近问题上的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Geometry of Equality-constrained Global Consensus Problems
A variety of unconstrained nonconvex optimization problems have been shown to have benign geometric landscapes that satisfy the strict saddle property and have no spurious local minima. We present a general result relating the geometry of an unconstrained centralized problem to its equality-constrained distributed extension. It follows that many global consensus problems inherit the benign geometry of their original centralized counterpart. Taking advantage of this fact, we demonstrate the favorable performance of the Gradient ADMM algorithm on a distributed low-rank matrix approximation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信