气动弹簧柔性壳的强度

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY
V. Masliev, A. Fomin, A. Lovskaya, A. Masliev, N. I. Gorbunov, V. Duschenko
{"title":"气动弹簧柔性壳的强度","authors":"V. Masliev, A. Fomin, A. Lovskaya, A. Masliev, N. I. Gorbunov, V. Duschenko","doi":"10.21122/2227-1031-2021-20-4-302-309","DOIUrl":null,"url":null,"abstract":"The strength for a flexible shell of a vehicle pneumatic spring during movement relative to a rail track has been studied in the paper. The calculation has been carried out using the finite element method implemented in the SolidWorks software environment. For this purpose, 3D drawings of a balloon-type pneumatic spring have been reproduced. A specific  feature of the design is that the distance between the upper and lower bottoms in static conditions is unchanged – thanks to the body position regulator, which maintains its constancy relative to the trolley frame. The results obtained have made it possible to conclude that there are certain reserves for the level of stresses, i.e.,  in addition to the vertical, it is possible to take into account also transverse mutual displacements of the air spring bottoms which will occur when the trolley moves relative to the body.  At the next stage, the stresses in the material of the flexible shell are investigated for mutual transverse displacements of the bottoms, which are observed with transverse displacements of the trolleys relative to the body of the vehicle when  traveling along curved sections of the track. At the same time, the maximum stresses in the material of the flexible shell of  the pneumatic spring are about 11 MPa, even with twice the nominal air pressure and transverse mutual displacements of the bottoms of 40 mm, that is, they are much less than the breaking strength (30 MPa). The carried out researches allow to draw  a conclusion that the design and parameters of a flexible shell of a balloon-type air springs ensure its strength under operational loading schemes. Therefore, in order to improve the dynamic qualities of vehicles, it is proposed to use a flexible shell  of a pneumatic spring as a component of the spring suspension.","PeriodicalId":42375,"journal":{"name":"Science & Technique","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strength of Flexible Shell of Pneumatic Springs\",\"authors\":\"V. Masliev, A. Fomin, A. Lovskaya, A. Masliev, N. I. Gorbunov, V. Duschenko\",\"doi\":\"10.21122/2227-1031-2021-20-4-302-309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strength for a flexible shell of a vehicle pneumatic spring during movement relative to a rail track has been studied in the paper. The calculation has been carried out using the finite element method implemented in the SolidWorks software environment. For this purpose, 3D drawings of a balloon-type pneumatic spring have been reproduced. A specific  feature of the design is that the distance between the upper and lower bottoms in static conditions is unchanged – thanks to the body position regulator, which maintains its constancy relative to the trolley frame. The results obtained have made it possible to conclude that there are certain reserves for the level of stresses, i.e.,  in addition to the vertical, it is possible to take into account also transverse mutual displacements of the air spring bottoms which will occur when the trolley moves relative to the body.  At the next stage, the stresses in the material of the flexible shell are investigated for mutual transverse displacements of the bottoms, which are observed with transverse displacements of the trolleys relative to the body of the vehicle when  traveling along curved sections of the track. At the same time, the maximum stresses in the material of the flexible shell of  the pneumatic spring are about 11 MPa, even with twice the nominal air pressure and transverse mutual displacements of the bottoms of 40 mm, that is, they are much less than the breaking strength (30 MPa). The carried out researches allow to draw  a conclusion that the design and parameters of a flexible shell of a balloon-type air springs ensure its strength under operational loading schemes. Therefore, in order to improve the dynamic qualities of vehicles, it is proposed to use a flexible shell  of a pneumatic spring as a component of the spring suspension.\",\"PeriodicalId\":42375,\"journal\":{\"name\":\"Science & Technique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2227-1031-2021-20-4-302-309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2227-1031-2021-20-4-302-309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了车辆气动弹簧柔性壳体相对于轨道运动时的强度。采用SolidWorks软件环境下的有限元法进行了计算。为此,复制了一个气球型气动弹簧的三维图纸。该设计的一个具体特点是,在静态条件下,上下底部之间的距离是不变的,这要归功于车身位置调节器,它相对于小车框架保持恒定。所获得的结果使我们可以得出这样的结论,即应力水平有一定的储备,即,除了垂直方向外,也可以考虑到空气弹簧底部的横向相互位移,这种位移将在小车相对于车身移动时发生。在下一阶段,研究了柔性壳体材料中的应力,以研究底部的相互横向位移,这种位移是通过小车在轨道弯曲路段行驶时相对于车体的横向位移来观察的。同时,气动弹簧柔性壳材料中的最大应力约为11 MPa,即使在公称气压的两倍和底部横向相互位移40 mm的情况下,即远小于断裂强度(30 MPa)。研究表明,气球式空气弹簧柔性壳体的设计和参数保证了其在各种载荷下的强度。因此,为了提高车辆的动力品质,建议采用气动弹簧的柔性壳体作为弹簧悬架的组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strength of Flexible Shell of Pneumatic Springs
The strength for a flexible shell of a vehicle pneumatic spring during movement relative to a rail track has been studied in the paper. The calculation has been carried out using the finite element method implemented in the SolidWorks software environment. For this purpose, 3D drawings of a balloon-type pneumatic spring have been reproduced. A specific  feature of the design is that the distance between the upper and lower bottoms in static conditions is unchanged – thanks to the body position regulator, which maintains its constancy relative to the trolley frame. The results obtained have made it possible to conclude that there are certain reserves for the level of stresses, i.e.,  in addition to the vertical, it is possible to take into account also transverse mutual displacements of the air spring bottoms which will occur when the trolley moves relative to the body.  At the next stage, the stresses in the material of the flexible shell are investigated for mutual transverse displacements of the bottoms, which are observed with transverse displacements of the trolleys relative to the body of the vehicle when  traveling along curved sections of the track. At the same time, the maximum stresses in the material of the flexible shell of  the pneumatic spring are about 11 MPa, even with twice the nominal air pressure and transverse mutual displacements of the bottoms of 40 mm, that is, they are much less than the breaking strength (30 MPa). The carried out researches allow to draw  a conclusion that the design and parameters of a flexible shell of a balloon-type air springs ensure its strength under operational loading schemes. Therefore, in order to improve the dynamic qualities of vehicles, it is proposed to use a flexible shell  of a pneumatic spring as a component of the spring suspension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science & Technique
Science & Technique ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
47
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信