{"title":"泄漏和击穿可靠性问题与低k介电介质在双大马士革铜工艺","authors":"R. Tsu, J. McPherson, W. Mckee","doi":"10.1109/RELPHY.2000.843938","DOIUrl":null,"url":null,"abstract":"Leakage and breakdown characteristics of low-k dielectrics are becoming increasingly important reliability issues for interconnects as they are scaled to 0.18 um and below. Several of the low-k dielectrics, integrated into a dual-damascene Cu process flow, are quite leaky and have difficulty in meeting a leakage spec of 1E-8 A/cm/sup 2/ at 25/spl deg/C. Time-dependent dielectric breakdown (TDDB) for some of the low-k candidate films is also an issue because of generally low breakdown strengths <2 MV/cm. Furthermore, Cu out-diffusion through poor barrier confinement can result in increased electronic leakage and premature TDDB. Also, moisture absorption by these low-k materials serves to: increase the dielectric constant, increase the leakage and reduce the breakdown strength. These findings can have important reliability implications for Cu/low-k and care must be exercised in dual-damascene integration schemes.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Leakage and breakdown reliability issues associated with low-k dielectrics in a dual-damascene Cu process\",\"authors\":\"R. Tsu, J. McPherson, W. Mckee\",\"doi\":\"10.1109/RELPHY.2000.843938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leakage and breakdown characteristics of low-k dielectrics are becoming increasingly important reliability issues for interconnects as they are scaled to 0.18 um and below. Several of the low-k dielectrics, integrated into a dual-damascene Cu process flow, are quite leaky and have difficulty in meeting a leakage spec of 1E-8 A/cm/sup 2/ at 25/spl deg/C. Time-dependent dielectric breakdown (TDDB) for some of the low-k candidate films is also an issue because of generally low breakdown strengths <2 MV/cm. Furthermore, Cu out-diffusion through poor barrier confinement can result in increased electronic leakage and premature TDDB. Also, moisture absorption by these low-k materials serves to: increase the dielectric constant, increase the leakage and reduce the breakdown strength. These findings can have important reliability implications for Cu/low-k and care must be exercised in dual-damascene integration schemes.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2000.843938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
摘要
低k介电介质的泄漏和击穿特性正成为互连中越来越重要的可靠性问题,因为它们被缩小到0.18 um及以下。一些低k介电体,集成到双damascene Cu工艺流程中,相当泄漏,并且在25/spl℃时难以满足1E-8 a /cm/sup 2/的泄漏规格。对于一些低k候选薄膜来说,时间相关介电击穿(TDDB)也是一个问题,因为它们的击穿强度通常较低,<2 MV/cm。此外,Cu通过不良的势垒限制向外扩散会导致电子泄漏增加和过早的TDDB。此外,这些低k材料的吸湿作用:增加介电常数,增加泄漏,降低击穿强度。这些发现可能对Cu/低钾的可靠性有重要的影响,在双大马士革集成方案中必须注意。
Leakage and breakdown reliability issues associated with low-k dielectrics in a dual-damascene Cu process
Leakage and breakdown characteristics of low-k dielectrics are becoming increasingly important reliability issues for interconnects as they are scaled to 0.18 um and below. Several of the low-k dielectrics, integrated into a dual-damascene Cu process flow, are quite leaky and have difficulty in meeting a leakage spec of 1E-8 A/cm/sup 2/ at 25/spl deg/C. Time-dependent dielectric breakdown (TDDB) for some of the low-k candidate films is also an issue because of generally low breakdown strengths <2 MV/cm. Furthermore, Cu out-diffusion through poor barrier confinement can result in increased electronic leakage and premature TDDB. Also, moisture absorption by these low-k materials serves to: increase the dielectric constant, increase the leakage and reduce the breakdown strength. These findings can have important reliability implications for Cu/low-k and care must be exercised in dual-damascene integration schemes.