{"title":"利用Twitter设计数据集的有效框架","authors":"Monal R.Torney, Dr.K.H.Walse, Dr.V.M.Thakare","doi":"10.47164/ijngc.v13i5.939","DOIUrl":null,"url":null,"abstract":"The rapid expansion of internet usage and related services like social media and blogs has increased people's level of expressiveness in day-to-day life. Social media platforms like Twitter and Facebook facilitate people to interact and exchange opinions about people, products, and services. As a result, a vast amount of data is available online in the form of views, tweets, messages, audio, and videos. An interface is needed to collect knowledge and insights from the various tweets, ideas, and comments. Thus we have proposed the Twitter API-based Interface, able to perform Hashtag searches and extract tweets from Twitter along with the ample number of fields related to the Twitter object. Using the interface, the 55 properties of each tweet are collected and used for further investigations. The python-based library called Tweepy is used to interact with the Twitter API. Due to the availability of real-worlddata, various issues related to text analysis can be addressed. The problems such as Sentiment Analysis, Opinion Mining, Implicit and Explicit detection, genuineness of views, and Opinion Spam detection can be addressed using the dataset availability.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"45 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Framework for design of Dataset Using Twitter\",\"authors\":\"Monal R.Torney, Dr.K.H.Walse, Dr.V.M.Thakare\",\"doi\":\"10.47164/ijngc.v13i5.939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid expansion of internet usage and related services like social media and blogs has increased people's level of expressiveness in day-to-day life. Social media platforms like Twitter and Facebook facilitate people to interact and exchange opinions about people, products, and services. As a result, a vast amount of data is available online in the form of views, tweets, messages, audio, and videos. An interface is needed to collect knowledge and insights from the various tweets, ideas, and comments. Thus we have proposed the Twitter API-based Interface, able to perform Hashtag searches and extract tweets from Twitter along with the ample number of fields related to the Twitter object. Using the interface, the 55 properties of each tweet are collected and used for further investigations. The python-based library called Tweepy is used to interact with the Twitter API. Due to the availability of real-worlddata, various issues related to text analysis can be addressed. The problems such as Sentiment Analysis, Opinion Mining, Implicit and Explicit detection, genuineness of views, and Opinion Spam detection can be addressed using the dataset availability.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v13i5.939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v13i5.939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Effective Framework for design of Dataset Using Twitter
The rapid expansion of internet usage and related services like social media and blogs has increased people's level of expressiveness in day-to-day life. Social media platforms like Twitter and Facebook facilitate people to interact and exchange opinions about people, products, and services. As a result, a vast amount of data is available online in the form of views, tweets, messages, audio, and videos. An interface is needed to collect knowledge and insights from the various tweets, ideas, and comments. Thus we have proposed the Twitter API-based Interface, able to perform Hashtag searches and extract tweets from Twitter along with the ample number of fields related to the Twitter object. Using the interface, the 55 properties of each tweet are collected and used for further investigations. The python-based library called Tweepy is used to interact with the Twitter API. Due to the availability of real-worlddata, various issues related to text analysis can be addressed. The problems such as Sentiment Analysis, Opinion Mining, Implicit and Explicit detection, genuineness of views, and Opinion Spam detection can be addressed using the dataset availability.