关于表示标量、向量和张量各向同性函数的最小数量的函数

IF 0.8
M. Shariff
{"title":"关于表示标量、向量和张量各向同性函数的最小数量的函数","authors":"M. Shariff","doi":"10.1093/qjmam/hbac022","DOIUrl":null,"url":null,"abstract":"\n In this article, we prove that for isotropic functions that depend on $P$ vectors, $N$ symmetric tensors and $M$ non-symmetric tensors (a) the minimal number of irreducible invariants for a scalar-valued isotropic function is $3P+9M+6N-3,$ (b) the minimal number of irreducible vectors for a vector-valued isotropic function is $3$ and (c) the minimal number of irreducible tensors for a tensor-valued isotropic function is at most $9$. The minimal irreducible numbers given in (a), (b) and (c) are, in general, much lower than the irreducible numbers obtained in the literature. This significant reduction in the numbers of irreducible isotropic functions has the potential to substantially reduce modelling complexity.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the Smallest Number of Functions Representing Isotropic Functions of Scalars, Vectors and Tensors\",\"authors\":\"M. Shariff\",\"doi\":\"10.1093/qjmam/hbac022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this article, we prove that for isotropic functions that depend on $P$ vectors, $N$ symmetric tensors and $M$ non-symmetric tensors (a) the minimal number of irreducible invariants for a scalar-valued isotropic function is $3P+9M+6N-3,$ (b) the minimal number of irreducible vectors for a vector-valued isotropic function is $3$ and (c) the minimal number of irreducible tensors for a tensor-valued isotropic function is at most $9$. The minimal irreducible numbers given in (a), (b) and (c) are, in general, much lower than the irreducible numbers obtained in the literature. This significant reduction in the numbers of irreducible isotropic functions has the potential to substantially reduce modelling complexity.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/qjmam/hbac022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qjmam/hbac022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文证明了依赖于$P$向量、$N$对称张量和$M$非对称张量的各向同性函数(a)标量值各向同性函数的最小不可约不变量数为$3P+9M+6N-3, (b)向量值各向同性函数的最小不可约向量数为$3,(c)张量值各向同性函数的最小不可约张量数不超过$9$。(a)、(b)和(c)中给出的最小不可约数一般比文献中得到的不可约数小得多。不可约各向同性函数数量的显著减少有可能大大降低建模的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Smallest Number of Functions Representing Isotropic Functions of Scalars, Vectors and Tensors
In this article, we prove that for isotropic functions that depend on $P$ vectors, $N$ symmetric tensors and $M$ non-symmetric tensors (a) the minimal number of irreducible invariants for a scalar-valued isotropic function is $3P+9M+6N-3,$ (b) the minimal number of irreducible vectors for a vector-valued isotropic function is $3$ and (c) the minimal number of irreducible tensors for a tensor-valued isotropic function is at most $9$. The minimal irreducible numbers given in (a), (b) and (c) are, in general, much lower than the irreducible numbers obtained in the literature. This significant reduction in the numbers of irreducible isotropic functions has the potential to substantially reduce modelling complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信