游戏与反思

Pub Date : 2020-07-21 DOI:10.1017/jsl.2020.20
J. P. Aguilera
{"title":"游戏与反思","authors":"J. P. Aguilera","doi":"10.1017/jsl.2020.20","DOIUrl":null,"url":null,"abstract":"<jats:p>We characterize the determinacy of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline3.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline4.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> in terms of determinacy assertions for short games. Specifically, we show that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline5.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline6.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> are determined if, and only if, there is a transitive model of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline7.png\" /><jats:tex-math>\n${\\mathsf {KP}}+{\\mathsf {AD}}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> containing <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline8.png\" /><jats:tex-math>\n$\\mathbb {R}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> and reflecting <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline9.png\" /><jats:tex-math>\n$\\Pi _1$\n</jats:tex-math></jats:alternatives></jats:inline-formula> facts about the next admissible set.</jats:p><jats:p>As a consequence, one obtains that, over the base theory <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline10.png\" /><jats:tex-math>\n${\\mathsf {KP}} + {\\mathsf {DC}} + ``\\mathbb {R}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> exists,” determinacy for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline11.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline12.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> is stronger than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline13.png\" /><jats:tex-math>\n${\\mathsf {AD}}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, but weaker than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline14.png\" /><jats:tex-math>\n${\\mathsf {AD}} + \\Sigma _1$\n</jats:tex-math></jats:alternatives></jats:inline-formula>-separation.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GAMES AND REFLECTION IN\",\"authors\":\"J. P. Aguilera\",\"doi\":\"10.1017/jsl.2020.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We characterize the determinacy of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline3.png\\\" /><jats:tex-math>\\n$F_\\\\sigma $\\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline4.png\\\" /><jats:tex-math>\\n$\\\\omega ^2$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> in terms of determinacy assertions for short games. Specifically, we show that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline5.png\\\" /><jats:tex-math>\\n$F_\\\\sigma $\\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline6.png\\\" /><jats:tex-math>\\n$\\\\omega ^2$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> are determined if, and only if, there is a transitive model of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline7.png\\\" /><jats:tex-math>\\n${\\\\mathsf {KP}}+{\\\\mathsf {AD}}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> containing <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline8.png\\\" /><jats:tex-math>\\n$\\\\mathbb {R}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> and reflecting <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline9.png\\\" /><jats:tex-math>\\n$\\\\Pi _1$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> facts about the next admissible set.</jats:p><jats:p>As a consequence, one obtains that, over the base theory <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline10.png\\\" /><jats:tex-math>\\n${\\\\mathsf {KP}} + {\\\\mathsf {DC}} + ``\\\\mathbb {R}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> exists,” determinacy for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline11.png\\\" /><jats:tex-math>\\n$F_\\\\sigma $\\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline12.png\\\" /><jats:tex-math>\\n$\\\\omega ^2$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> is stronger than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline13.png\\\" /><jats:tex-math>\\n${\\\\mathsf {AD}}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>, but weaker than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline14.png\\\" /><jats:tex-math>\\n${\\\\mathsf {AD}} + \\\\Sigma _1$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>-separation.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2020.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jsl.2020.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们根据短博弈的确定性断言来表征长度为$\omega ^2$的$F_\sigma $博弈的确定性。具体地说,我们证明了长度为$\omega ^2$的$F_\sigma $对策是确定的,当且仅当存在一个包含$\mathbb {R}$并反映关于下一个可容许集的$\Pi _1$事实的${\mathsf {KP}}+{\mathsf {AD}}$传递模型。因此,根据${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$存在的基本理论,“长度为$\omega ^2$的$F_\sigma $游戏的确定性比${\mathsf {AD}}$强,但比${\mathsf {AD}} + \Sigma _1$ -分离弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
GAMES AND REFLECTION IN
We characterize the determinacy of $F_\sigma $ games of length $\omega ^2$ in terms of determinacy assertions for short games. Specifically, we show that $F_\sigma $ games of length $\omega ^2$ are determined if, and only if, there is a transitive model of ${\mathsf {KP}}+{\mathsf {AD}}$ containing $\mathbb {R}$ and reflecting $\Pi _1$ facts about the next admissible set.As a consequence, one obtains that, over the base theory ${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$ exists,” determinacy for $F_\sigma $ games of length $\omega ^2$ is stronger than ${\mathsf {AD}}$ , but weaker than ${\mathsf {AD}} + \Sigma _1$ -separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信