{"title":"游戏与反思","authors":"J. P. Aguilera","doi":"10.1017/jsl.2020.20","DOIUrl":null,"url":null,"abstract":"<jats:p>We characterize the determinacy of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline3.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline4.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> in terms of determinacy assertions for short games. Specifically, we show that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline5.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline6.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> are determined if, and only if, there is a transitive model of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline7.png\" /><jats:tex-math>\n${\\mathsf {KP}}+{\\mathsf {AD}}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> containing <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline8.png\" /><jats:tex-math>\n$\\mathbb {R}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> and reflecting <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline9.png\" /><jats:tex-math>\n$\\Pi _1$\n</jats:tex-math></jats:alternatives></jats:inline-formula> facts about the next admissible set.</jats:p><jats:p>As a consequence, one obtains that, over the base theory <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline10.png\" /><jats:tex-math>\n${\\mathsf {KP}} + {\\mathsf {DC}} + ``\\mathbb {R}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> exists,” determinacy for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline11.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline12.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> is stronger than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline13.png\" /><jats:tex-math>\n${\\mathsf {AD}}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, but weaker than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline14.png\" /><jats:tex-math>\n${\\mathsf {AD}} + \\Sigma _1$\n</jats:tex-math></jats:alternatives></jats:inline-formula>-separation.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GAMES AND REFLECTION IN\",\"authors\":\"J. P. Aguilera\",\"doi\":\"10.1017/jsl.2020.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We characterize the determinacy of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline3.png\\\" /><jats:tex-math>\\n$F_\\\\sigma $\\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline4.png\\\" /><jats:tex-math>\\n$\\\\omega ^2$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> in terms of determinacy assertions for short games. Specifically, we show that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline5.png\\\" /><jats:tex-math>\\n$F_\\\\sigma $\\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline6.png\\\" /><jats:tex-math>\\n$\\\\omega ^2$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> are determined if, and only if, there is a transitive model of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline7.png\\\" /><jats:tex-math>\\n${\\\\mathsf {KP}}+{\\\\mathsf {AD}}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> containing <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline8.png\\\" /><jats:tex-math>\\n$\\\\mathbb {R}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> and reflecting <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline9.png\\\" /><jats:tex-math>\\n$\\\\Pi _1$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> facts about the next admissible set.</jats:p><jats:p>As a consequence, one obtains that, over the base theory <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline10.png\\\" /><jats:tex-math>\\n${\\\\mathsf {KP}} + {\\\\mathsf {DC}} + ``\\\\mathbb {R}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> exists,” determinacy for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline11.png\\\" /><jats:tex-math>\\n$F_\\\\sigma $\\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline12.png\\\" /><jats:tex-math>\\n$\\\\omega ^2$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> is stronger than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline13.png\\\" /><jats:tex-math>\\n${\\\\mathsf {AD}}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>, but weaker than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022481220000201_inline14.png\\\" /><jats:tex-math>\\n${\\\\mathsf {AD}} + \\\\Sigma _1$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>-separation.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2020.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jsl.2020.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We characterize the determinacy of
$F_\sigma $
games of length
$\omega ^2$
in terms of determinacy assertions for short games. Specifically, we show that
$F_\sigma $
games of length
$\omega ^2$
are determined if, and only if, there is a transitive model of
${\mathsf {KP}}+{\mathsf {AD}}$
containing
$\mathbb {R}$
and reflecting
$\Pi _1$
facts about the next admissible set.As a consequence, one obtains that, over the base theory
${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$
exists,” determinacy for
$F_\sigma $
games of length
$\omega ^2$
is stronger than
${\mathsf {AD}}$
, but weaker than
${\mathsf {AD}} + \Sigma _1$
-separation.