{"title":"Möbius带上光滑函数的同伦性质","authors":"I. Kuznietsova, S. Maksymenko","doi":"10.15673/tmgc.v12i3.1488","DOIUrl":null,"url":null,"abstract":"Let $B$ be a M\\\"obius band and $f:B \\to \\mathbb{R}$ be a Morse map taking a constant value on $\\partial B$, and $\\mathcal{S}(f,\\partial B)$ be the group of diffeomorphisms $h$ of $B$ fixed on $\\partial B$ and preserving $f$ in the sense that $f\\circ h = f$. \nUnder certain assumptions on $f$ we compute the group $\\pi_0\\mathcal{S}(f,\\partial B)$ of isotopy classes of such diffeomorphisms. \nIn fact, those computations hold for functions $f:B\\to\\mathbb{R}$ whose germs at critical points are smoothly equivalent to homogeneous polynomials $\\mathbb{R}^2\\to\\mathbb{R}$ without multiple factors. \nTogether with previous results of the second author this allows to compute similar groups for certain classes of smooth functions $f:N\\to\\mathbb{R}$ on non-orientable compact surfaces $N$.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Homotopy properties of smooth functions on the Möbius band\",\"authors\":\"I. Kuznietsova, S. Maksymenko\",\"doi\":\"10.15673/tmgc.v12i3.1488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B$ be a M\\\\\\\"obius band and $f:B \\\\to \\\\mathbb{R}$ be a Morse map taking a constant value on $\\\\partial B$, and $\\\\mathcal{S}(f,\\\\partial B)$ be the group of diffeomorphisms $h$ of $B$ fixed on $\\\\partial B$ and preserving $f$ in the sense that $f\\\\circ h = f$. \\nUnder certain assumptions on $f$ we compute the group $\\\\pi_0\\\\mathcal{S}(f,\\\\partial B)$ of isotopy classes of such diffeomorphisms. \\nIn fact, those computations hold for functions $f:B\\\\to\\\\mathbb{R}$ whose germs at critical points are smoothly equivalent to homogeneous polynomials $\\\\mathbb{R}^2\\\\to\\\\mathbb{R}$ without multiple factors. \\nTogether with previous results of the second author this allows to compute similar groups for certain classes of smooth functions $f:N\\\\to\\\\mathbb{R}$ on non-orientable compact surfaces $N$.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v12i3.1488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v12i3.1488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
摘要
设$B$为Möbius带,$f:B \to \mathbb{R}$为在$\partial B$上取常数值的莫尔斯映射,$\mathcal{S}(f,\partial B)$为$B$的差同群$h$固定在$\partial B$上,并保留$f$在$f\circ h = f$的意义上。在$f$的某些假设下,我们计算了这类微分同形的同位素类的群$\pi_0\mathcal{S}(f,\partial B)$。事实上,这些计算适用于函数$f:B\to\mathbb{R}$,其在临界点处的细菌光滑等效于齐次多项式$\mathbb{R}^2\to\mathbb{R}$,没有多因子。结合第二作者之前的结果,这允许计算某些类光滑函数$f:N\to\mathbb{R}$在不可定向紧致曲面$N$上的相似群。
Homotopy properties of smooth functions on the Möbius band
Let $B$ be a M\"obius band and $f:B \to \mathbb{R}$ be a Morse map taking a constant value on $\partial B$, and $\mathcal{S}(f,\partial B)$ be the group of diffeomorphisms $h$ of $B$ fixed on $\partial B$ and preserving $f$ in the sense that $f\circ h = f$.
Under certain assumptions on $f$ we compute the group $\pi_0\mathcal{S}(f,\partial B)$ of isotopy classes of such diffeomorphisms.
In fact, those computations hold for functions $f:B\to\mathbb{R}$ whose germs at critical points are smoothly equivalent to homogeneous polynomials $\mathbb{R}^2\to\mathbb{R}$ without multiple factors.
Together with previous results of the second author this allows to compute similar groups for certain classes of smooth functions $f:N\to\mathbb{R}$ on non-orientable compact surfaces $N$.