离子对流动相添加剂改善超临界流体色谱中极性化合物的分离

Zicheng Yue, Jun Cao
{"title":"离子对流动相添加剂改善超临界流体色谱中极性化合物的分离","authors":"Zicheng Yue, Jun Cao","doi":"10.2139/ssrn.3888168","DOIUrl":null,"url":null,"abstract":"In this study, a supercritical fluid chromatography (SFC) method based on ion pair reagents was used to separate polar alkaloids. The chromatographic parameters containing stationary phases, additive types, additive concentrations, back pressures, temperatures and flow rates, were optimized. Baseline separation of the compounds were completed in 20 min on an Agilent Pursuit 5 PFP column (4.6 × 150 mm) by using carbon dioxide as mobile phases and 7.5 mM sodium 1-pentanesulfonate as additive with a gradient elution at 140 bar, 60 °C, and a flow rate of 1.5 mL/min. The retention rate and resolution of the analytes are satisfactory. The limits of detection were 27.04−298.03 ng/mL, and the limits of quantification were 90.15−993.42 ng/mL. The recoveries of low and high concentrations were 77.46%−111.86% and 83.84%−111.00%, respectively. This ion pair additive greatly improved the separation efficiency of polar compounds. Consequently, this SFC method was successfully applied to the separation of alkaloids from rhizoma corydalis.","PeriodicalId":19880,"journal":{"name":"PharmSciRN EM Feeds","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion Pair-Based Mobile Phase Additives to Improve the Separation of Polar Compounds in Supercritical Fluid Chromatography\",\"authors\":\"Zicheng Yue, Jun Cao\",\"doi\":\"10.2139/ssrn.3888168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a supercritical fluid chromatography (SFC) method based on ion pair reagents was used to separate polar alkaloids. The chromatographic parameters containing stationary phases, additive types, additive concentrations, back pressures, temperatures and flow rates, were optimized. Baseline separation of the compounds were completed in 20 min on an Agilent Pursuit 5 PFP column (4.6 × 150 mm) by using carbon dioxide as mobile phases and 7.5 mM sodium 1-pentanesulfonate as additive with a gradient elution at 140 bar, 60 °C, and a flow rate of 1.5 mL/min. The retention rate and resolution of the analytes are satisfactory. The limits of detection were 27.04−298.03 ng/mL, and the limits of quantification were 90.15−993.42 ng/mL. The recoveries of low and high concentrations were 77.46%−111.86% and 83.84%−111.00%, respectively. This ion pair additive greatly improved the separation efficiency of polar compounds. Consequently, this SFC method was successfully applied to the separation of alkaloids from rhizoma corydalis.\",\"PeriodicalId\":19880,\"journal\":{\"name\":\"PharmSciRN EM Feeds\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PharmSciRN EM Feeds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3888168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PharmSciRN EM Feeds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3888168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用基于离子对试剂的超临界流体色谱(SFC)分离极性生物碱。对固定相、添加剂种类、添加剂浓度、背压、温度和流速等色谱参数进行了优化。在Agilent Pursuit 5 PFP色谱柱(4.6 × 150 mm)上,以二氧化碳为流动相,7.5 mm 1-戊磺酸钠为添加剂,在140 bar, 60℃,流速为1.5 mL/min的梯度洗脱条件下,在20 min内完成化合物的基线分离。分析物的保留率和分辨率令人满意。检测限为27.04 ~ 298.03 ng/mL,定量限为90.15 ~ 993.42 ng/mL。低、高浓度加标回收率分别为77.46% ~ 111.86%和83.84% ~ 111.00%。这种离子对添加剂大大提高了极性化合物的分离效率。结果表明,该方法可用于连根中生物碱的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion Pair-Based Mobile Phase Additives to Improve the Separation of Polar Compounds in Supercritical Fluid Chromatography
In this study, a supercritical fluid chromatography (SFC) method based on ion pair reagents was used to separate polar alkaloids. The chromatographic parameters containing stationary phases, additive types, additive concentrations, back pressures, temperatures and flow rates, were optimized. Baseline separation of the compounds were completed in 20 min on an Agilent Pursuit 5 PFP column (4.6 × 150 mm) by using carbon dioxide as mobile phases and 7.5 mM sodium 1-pentanesulfonate as additive with a gradient elution at 140 bar, 60 °C, and a flow rate of 1.5 mL/min. The retention rate and resolution of the analytes are satisfactory. The limits of detection were 27.04−298.03 ng/mL, and the limits of quantification were 90.15−993.42 ng/mL. The recoveries of low and high concentrations were 77.46%−111.86% and 83.84%−111.00%, respectively. This ion pair additive greatly improved the separation efficiency of polar compounds. Consequently, this SFC method was successfully applied to the separation of alkaloids from rhizoma corydalis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信