素幂群的进一步研究问题和定理

Pub Date : 2019-01-01 DOI:10.3336/gm.54.1.06
Y. Berkovich, Z. Janko
{"title":"素幂群的进一步研究问题和定理","authors":"Y. Berkovich, Z. Janko","doi":"10.3336/gm.54.1.06","DOIUrl":null,"url":null,"abstract":"4101. Describe the p-groups all of whose subgroups of index p, k ∈ {2, 3, 4}, are normal (three problems). Consider in detail the groups of exponent p. 4102. Study the nonabelian p-groups G all of whose maximal abelian subgroups are normal (any two elements of G generate a subgroup of class ≤ 2 so our group is regular if p > 2, by Theorem 7.1(b) in [B1]). Consider in detail the case p = 2. 4103. Find the maximal possible order of the automorphism groups of the groups of maximal class of order p. 4104. Study the non-Dedekindian p-groups covered by nonnormal subgroups. 4105. Study the p-groups G in which the intersection of any two nonincident subgroups, say A and B, of equal order (of different orders) is normal (i) either in A or in B, (ii) in 〈A,B〉. 4106. Study the p-groups G all of whose nonabelian subgroups of equal order are isomorphic (permutable). Consider in detail the case when exp(G) = p.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Further research problems and theorems on prime power groups\",\"authors\":\"Y. Berkovich, Z. Janko\",\"doi\":\"10.3336/gm.54.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"4101. Describe the p-groups all of whose subgroups of index p, k ∈ {2, 3, 4}, are normal (three problems). Consider in detail the groups of exponent p. 4102. Study the nonabelian p-groups G all of whose maximal abelian subgroups are normal (any two elements of G generate a subgroup of class ≤ 2 so our group is regular if p > 2, by Theorem 7.1(b) in [B1]). Consider in detail the case p = 2. 4103. Find the maximal possible order of the automorphism groups of the groups of maximal class of order p. 4104. Study the non-Dedekindian p-groups covered by nonnormal subgroups. 4105. Study the p-groups G in which the intersection of any two nonincident subgroups, say A and B, of equal order (of different orders) is normal (i) either in A or in B, (ii) in 〈A,B〉. 4106. Study the p-groups G all of whose nonabelian subgroups of equal order are isomorphic (permutable). Consider in detail the case when exp(G) = p.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.54.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

4101. 描述指标p, k∈{2,3,4}的子群均为正态的p群(三个问题)。详细考虑第4102页的指数群。研究非abel p群G的极大阿贝尔子群都是正规的(G的任意两个元素生成一个类≤2的子群,因此根据[B1]中的定理7.1(b),如果p > 2,我们的群是正规的)。详细考虑p = 2的情况。4103. 求阶为p. 4104的极大类群的自同构群的极大可能阶。研究非正常亚群所覆盖的非dedekindian p群。4105. 研究p群G中任意两个等阶(不同阶)的非关联子群A和B的交正态(i)在A或B中,(ii)在< A,B >中。4106. 研究p群G的所有等阶非abel子群都是同构的(置换的)。详细考虑exp(G) = p的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Further research problems and theorems on prime power groups
4101. Describe the p-groups all of whose subgroups of index p, k ∈ {2, 3, 4}, are normal (three problems). Consider in detail the groups of exponent p. 4102. Study the nonabelian p-groups G all of whose maximal abelian subgroups are normal (any two elements of G generate a subgroup of class ≤ 2 so our group is regular if p > 2, by Theorem 7.1(b) in [B1]). Consider in detail the case p = 2. 4103. Find the maximal possible order of the automorphism groups of the groups of maximal class of order p. 4104. Study the non-Dedekindian p-groups covered by nonnormal subgroups. 4105. Study the p-groups G in which the intersection of any two nonincident subgroups, say A and B, of equal order (of different orders) is normal (i) either in A or in B, (ii) in 〈A,B〉. 4106. Study the p-groups G all of whose nonabelian subgroups of equal order are isomorphic (permutable). Consider in detail the case when exp(G) = p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信