一种新的期权定价方法:带约束的半随机核回归法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Le Jiang, Cheng-long Xu
{"title":"一种新的期权定价方法:带约束的半随机核回归法","authors":"Le Jiang, Cheng-long Xu","doi":"10.1080/00207160.2023.2217302","DOIUrl":null,"url":null,"abstract":"This paper presents a unified semi-stochastic kernel regression method for pricing options under general stochastic volatility model. The method combines semi-stochastic sampling for initial asset values with Monte Carlo simulations to construct a least-squares based kernel function regression solution. This approach can not only approximates option prices, but also determines the Greeks of option. The least square problem is augmented with weighted derivative constraints, which enables flexible adjustment of approximate errors for both option prices and Greeks. Numerical results show the efficiency of the proposed method for the Vanilla option and some exotic options: Asian option, Lookback option, discretely monitored Barrier option and the Basket option with several assets under the stochastic volatility model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new options pricing method: semi-stochastic kernel regression method with constraints\",\"authors\":\"Le Jiang, Cheng-long Xu\",\"doi\":\"10.1080/00207160.2023.2217302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unified semi-stochastic kernel regression method for pricing options under general stochastic volatility model. The method combines semi-stochastic sampling for initial asset values with Monte Carlo simulations to construct a least-squares based kernel function regression solution. This approach can not only approximates option prices, but also determines the Greeks of option. The least square problem is augmented with weighted derivative constraints, which enables flexible adjustment of approximate errors for both option prices and Greeks. Numerical results show the efficiency of the proposed method for the Vanilla option and some exotic options: Asian option, Lookback option, discretely monitored Barrier option and the Basket option with several assets under the stochastic volatility model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2217302\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2217302","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一般随机波动率模型下期权定价的统一半随机核回归方法。该方法将初始资产值的半随机抽样与蒙特卡罗模拟相结合,构造了基于最小二乘的核函数回归解。该方法不仅可以逼近期权价格,而且可以确定期权的希腊值。最小二乘问题增加了加权导数约束,这使得期权价格和希腊人的近似误差都能灵活调整。数值结果表明,该方法在随机波动率模型下对香草期权和一些奇异期权(亚洲期权、回溯期权、离散监测障碍期权和包含多个资产的篮子期权)具有较好的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new options pricing method: semi-stochastic kernel regression method with constraints
This paper presents a unified semi-stochastic kernel regression method for pricing options under general stochastic volatility model. The method combines semi-stochastic sampling for initial asset values with Monte Carlo simulations to construct a least-squares based kernel function regression solution. This approach can not only approximates option prices, but also determines the Greeks of option. The least square problem is augmented with weighted derivative constraints, which enables flexible adjustment of approximate errors for both option prices and Greeks. Numerical results show the efficiency of the proposed method for the Vanilla option and some exotic options: Asian option, Lookback option, discretely monitored Barrier option and the Basket option with several assets under the stochastic volatility model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信