分段均匀分布的最优量化

J. Rosenblatt, M. Roychowdhury
{"title":"分段均匀分布的最优量化","authors":"J. Rosenblatt, M. Roychowdhury","doi":"10.2478/udt-2018-0009","DOIUrl":null,"url":null,"abstract":"Abstract Quantization for a probability distribution refers to the idea of estimating a given probability by a discrete probability supported by a finite number of points. In this paper, firstly a general approach to this process is outlined using independent random variables and ergodic maps; these give asymptotically the optimal sets of n-means and the nth quantization errors for all positive integers n. Secondly two piecewise uniform distributions are considered on R: one with infinite number of pieces and one with finite number of pieces. For these two probability measures, we describe the optimal sets of n-means and the nth quantization errors for all n ∈ N. It is seen that for a uniform distribution with infinite number of pieces to determine the optimal sets of n-means for n ≥ 2 one needs to know an optimal set of (n − 1)-means, but for a uniform distribution with finite number of pieces one can directly determine the optimal sets of n-means and the nth quantization errors for all n ∈ N.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"43 1","pages":"23 - 55"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Optimal Quantization for Piecewise Uniform Distributions\",\"authors\":\"J. Rosenblatt, M. Roychowdhury\",\"doi\":\"10.2478/udt-2018-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantization for a probability distribution refers to the idea of estimating a given probability by a discrete probability supported by a finite number of points. In this paper, firstly a general approach to this process is outlined using independent random variables and ergodic maps; these give asymptotically the optimal sets of n-means and the nth quantization errors for all positive integers n. Secondly two piecewise uniform distributions are considered on R: one with infinite number of pieces and one with finite number of pieces. For these two probability measures, we describe the optimal sets of n-means and the nth quantization errors for all n ∈ N. It is seen that for a uniform distribution with infinite number of pieces to determine the optimal sets of n-means for n ≥ 2 one needs to know an optimal set of (n − 1)-means, but for a uniform distribution with finite number of pieces one can directly determine the optimal sets of n-means and the nth quantization errors for all n ∈ N.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"43 1\",\"pages\":\"23 - 55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2018-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2018-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

摘要概率分布的量化是指用有限个数点支持的离散概率估计给定概率的思想。本文首先利用独立随机变量和遍历映射概述了这一过程的一般方法;其次,考虑了R上的两个分段均匀分布:一个具有无限块数,一个具有有限块数。这两个概率的措施,我们描述的最佳集n和n量子化错误n∈n是看到的与无数块均匀分布,以确定最优组n n≥2人需要知道一组最优的(n−1)——但是,对于一个均匀分布的有限数量的部分可以直接确定最优集n和n n∈n量子化错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Quantization for Piecewise Uniform Distributions
Abstract Quantization for a probability distribution refers to the idea of estimating a given probability by a discrete probability supported by a finite number of points. In this paper, firstly a general approach to this process is outlined using independent random variables and ergodic maps; these give asymptotically the optimal sets of n-means and the nth quantization errors for all positive integers n. Secondly two piecewise uniform distributions are considered on R: one with infinite number of pieces and one with finite number of pieces. For these two probability measures, we describe the optimal sets of n-means and the nth quantization errors for all n ∈ N. It is seen that for a uniform distribution with infinite number of pieces to determine the optimal sets of n-means for n ≥ 2 one needs to know an optimal set of (n − 1)-means, but for a uniform distribution with finite number of pieces one can directly determine the optimal sets of n-means and the nth quantization errors for all n ∈ N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信