J. Meimoun, Audrey Favrelle-Huret, J. Winter, P. Zinck
{"title":"有机碱存在下聚l -丙交酯的外映和链断裂","authors":"J. Meimoun, Audrey Favrelle-Huret, J. Winter, P. Zinck","doi":"10.3390/macromol2020016","DOIUrl":null,"url":null,"abstract":"Organocatalysis for polymer chemistry has become a subject of significant interest in the last two decades. In this contribution, we have studied the evolution of the microstructure of poly(L-lactide) in solution in toluene at 105 °C in the presence of various organocatalysts. Weak bases such as triethylamine and DMAP (4-dimethylaminopyridine) lead to a low extent of epimerization and a chain scission reaction. The DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) amidine induces in turn important extents of both epimerization (up to 37% D-stereoisomer formation) and chain scission. This has been tentatively attributed to a nucleophilic mechanism. Cinchona alkaloids lead to only a modest amount of epimerization. Phosphazene bases are in turn rather active, especially for high catalytic loadings (>1 mol %). The chain scission observed in this case is proposed to occur via a base-catalyzed hydrolysis mechanism. Finally, it is shown that combining an organic base with an acid can lead to a synergistic effect regarding notably the chain scission reaction.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases\",\"authors\":\"J. Meimoun, Audrey Favrelle-Huret, J. Winter, P. Zinck\",\"doi\":\"10.3390/macromol2020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organocatalysis for polymer chemistry has become a subject of significant interest in the last two decades. In this contribution, we have studied the evolution of the microstructure of poly(L-lactide) in solution in toluene at 105 °C in the presence of various organocatalysts. Weak bases such as triethylamine and DMAP (4-dimethylaminopyridine) lead to a low extent of epimerization and a chain scission reaction. The DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) amidine induces in turn important extents of both epimerization (up to 37% D-stereoisomer formation) and chain scission. This has been tentatively attributed to a nucleophilic mechanism. Cinchona alkaloids lead to only a modest amount of epimerization. Phosphazene bases are in turn rather active, especially for high catalytic loadings (>1 mol %). The chain scission observed in this case is proposed to occur via a base-catalyzed hydrolysis mechanism. Finally, it is shown that combining an organic base with an acid can lead to a synergistic effect regarding notably the chain scission reaction.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol2020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol2020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases
Organocatalysis for polymer chemistry has become a subject of significant interest in the last two decades. In this contribution, we have studied the evolution of the microstructure of poly(L-lactide) in solution in toluene at 105 °C in the presence of various organocatalysts. Weak bases such as triethylamine and DMAP (4-dimethylaminopyridine) lead to a low extent of epimerization and a chain scission reaction. The DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) amidine induces in turn important extents of both epimerization (up to 37% D-stereoisomer formation) and chain scission. This has been tentatively attributed to a nucleophilic mechanism. Cinchona alkaloids lead to only a modest amount of epimerization. Phosphazene bases are in turn rather active, especially for high catalytic loadings (>1 mol %). The chain scission observed in this case is proposed to occur via a base-catalyzed hydrolysis mechanism. Finally, it is shown that combining an organic base with an acid can lead to a synergistic effect regarding notably the chain scission reaction.