{"title":"单机调度问题的3/2逼近算法","authors":"N. Grigoreva","doi":"10.21638/11701/spbu10.2021.302","DOIUrl":null,"url":null,"abstract":"The problem of minimizing the maximum delivery times while scheduling tasks on a single processor is a classical combinatorial optimization problem. Each task ui must be processed without interruption for t(ui) time units on the machine, which can process at most one task at time. Each task uw; has a release time r(ui), when the task is ready for processing, and a delivery time g(ui). Its delivery begins immediately after processing has been completed. The objective is to minimize the time, by which all jobs are delivered. In the Graham notation this problem is denoted by 1|rj,qi|Cmax, it has many applications and it is NP-hard in a strong sense. The problem is useful in solving owshop and jobshop scheduling problems. The goal of this article is to propose a new 3/2-approximation algorithm, which runs in O(n log n) times for scheduling problem 1|rj.qi|Cmax. An example is provided which shows that the bound of 3/2 is accurate. To compare the effectiveness of proposed algorithms, random generated problems of up to 5000 tasks were tested.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"164 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3/2-approximation algorithm for a single machine scheduling problem\",\"authors\":\"N. Grigoreva\",\"doi\":\"10.21638/11701/spbu10.2021.302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of minimizing the maximum delivery times while scheduling tasks on a single processor is a classical combinatorial optimization problem. Each task ui must be processed without interruption for t(ui) time units on the machine, which can process at most one task at time. Each task uw; has a release time r(ui), when the task is ready for processing, and a delivery time g(ui). Its delivery begins immediately after processing has been completed. The objective is to minimize the time, by which all jobs are delivered. In the Graham notation this problem is denoted by 1|rj,qi|Cmax, it has many applications and it is NP-hard in a strong sense. The problem is useful in solving owshop and jobshop scheduling problems. The goal of this article is to propose a new 3/2-approximation algorithm, which runs in O(n log n) times for scheduling problem 1|rj.qi|Cmax. An example is provided which shows that the bound of 3/2 is accurate. To compare the effectiveness of proposed algorithms, random generated problems of up to 5000 tasks were tested.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"164 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2021.302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2021.302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
3/2-approximation algorithm for a single machine scheduling problem
The problem of minimizing the maximum delivery times while scheduling tasks on a single processor is a classical combinatorial optimization problem. Each task ui must be processed without interruption for t(ui) time units on the machine, which can process at most one task at time. Each task uw; has a release time r(ui), when the task is ready for processing, and a delivery time g(ui). Its delivery begins immediately after processing has been completed. The objective is to minimize the time, by which all jobs are delivered. In the Graham notation this problem is denoted by 1|rj,qi|Cmax, it has many applications and it is NP-hard in a strong sense. The problem is useful in solving owshop and jobshop scheduling problems. The goal of this article is to propose a new 3/2-approximation algorithm, which runs in O(n log n) times for scheduling problem 1|rj.qi|Cmax. An example is provided which shows that the bound of 3/2 is accurate. To compare the effectiveness of proposed algorithms, random generated problems of up to 5000 tasks were tested.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.