自由费米子点的科尔曼对应

IF 2.5 1区 数学 Q1 MATHEMATICS
R. Bauerschmidt, Christian Webb
{"title":"自由费米子点的科尔曼对应","authors":"R. Bauerschmidt, Christian Webb","doi":"10.4171/JEMS/1329","DOIUrl":null,"url":null,"abstract":"We prove that the truncated correlation functions of the charge and gradient fields associated with the massless sine-Gordon model on $\\mathbb{R}^2$ with $\\beta=4\\pi$ exist for all coupling constants and are equal to those of the chiral densities and vector current of free massive Dirac fermions. This is an instance of Coleman's prediction that the massless sine-Gordon model and the massive Thirring model are equivalent (in the above sense of correlation functions). Our main novelty is that we prove this correspondence in the non-perturative regime of the infinite volume models. We use this correspondence to show that the correlation functions of the massless sine-Gordon model with $\\beta=4\\pi$ decay exponentially and that the corresponding probabilistic field is localized.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":"34 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Coleman correspondence at the free fermion point\",\"authors\":\"R. Bauerschmidt, Christian Webb\",\"doi\":\"10.4171/JEMS/1329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the truncated correlation functions of the charge and gradient fields associated with the massless sine-Gordon model on $\\\\mathbb{R}^2$ with $\\\\beta=4\\\\pi$ exist for all coupling constants and are equal to those of the chiral densities and vector current of free massive Dirac fermions. This is an instance of Coleman's prediction that the massless sine-Gordon model and the massive Thirring model are equivalent (in the above sense of correlation functions). Our main novelty is that we prove this correspondence in the non-perturative regime of the infinite volume models. We use this correspondence to show that the correlation functions of the massless sine-Gordon model with $\\\\beta=4\\\\pi$ decay exponentially and that the corresponding probabilistic field is localized.\",\"PeriodicalId\":50003,\"journal\":{\"name\":\"Journal of the European Mathematical Society\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JEMS/1329\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JEMS/1329","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

我们在$\mathbb{R}^2$和$\beta=4\pi$上证明了与无质量正弦-戈登模型相关的电荷场和梯度场的截断相关函数对所有耦合常数都存在,并且等于自由质量狄拉克费米子的手性密度和矢量电流的截断相关函数。这是Coleman预测的一个例子,即无质量的sin - gordon模型和有质量的Thirring模型是等效的(在上述相关函数的意义上)。我们的主要新颖之处在于我们在无限体积模型的非摄动状态下证明了这种对应关系。我们使用这种对应关系来证明具有$\beta=4\pi$的无质量正弦-戈登模型的相关函数呈指数衰减,并且相应的概率场是局域的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Coleman correspondence at the free fermion point
We prove that the truncated correlation functions of the charge and gradient fields associated with the massless sine-Gordon model on $\mathbb{R}^2$ with $\beta=4\pi$ exist for all coupling constants and are equal to those of the chiral densities and vector current of free massive Dirac fermions. This is an instance of Coleman's prediction that the massless sine-Gordon model and the massive Thirring model are equivalent (in the above sense of correlation functions). Our main novelty is that we prove this correspondence in the non-perturative regime of the infinite volume models. We use this correspondence to show that the correlation functions of the massless sine-Gordon model with $\beta=4\pi$ decay exponentially and that the corresponding probabilistic field is localized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信