以四色、五色、六色为例分析赞美诗的性质

S. Gates, Yangrui Hu, K. Stiffler
{"title":"以四色、五色、六色为例分析赞美诗的性质","authors":"S. Gates, Yangrui Hu, K. Stiffler","doi":"10.1142/S0217751X21500822","DOIUrl":null,"url":null,"abstract":"The mathematical concept of a \"Banchoff index\" associated with discrete Morse functions for oriented triangular meshes has been shown to correspond to the height assignments of nodes in adinkras. In recent work there has been introduced the concept of \"Banchoff matrices\" leading to HYMNs - height yielding matrix numbers. HYMNs map the shape of an adinkra to a set of eigenvalues derived from Banchoff matrices. In the context of some examples of four-color, minimal five-color, and minimal six-color adinkras, properties of the HYMNs are explored.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Properties of HYMNs in examples of four-color, five-color, and six-color adinkras\",\"authors\":\"S. Gates, Yangrui Hu, K. Stiffler\",\"doi\":\"10.1142/S0217751X21500822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematical concept of a \\\"Banchoff index\\\" associated with discrete Morse functions for oriented triangular meshes has been shown to correspond to the height assignments of nodes in adinkras. In recent work there has been introduced the concept of \\\"Banchoff matrices\\\" leading to HYMNs - height yielding matrix numbers. HYMNs map the shape of an adinkra to a set of eigenvalues derived from Banchoff matrices. In the context of some examples of four-color, minimal five-color, and minimal six-color adinkras, properties of the HYMNs are explored.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217751X21500822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X21500822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

“Banchoff指数”的数学概念与离散莫尔斯函数有关的定向三角形网格已经被证明对应于adinkras中节点的高度分配。在最近的工作中,引入了“班霍夫矩阵”的概念,导致HYMNs -高度产生矩阵数。HYMNs将adinkra的形状映射到由Banchoff矩阵导出的一组特征值。以四色、最小五色、最小六色三种颜色为例,探讨了赞美诗的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of HYMNs in examples of four-color, five-color, and six-color adinkras
The mathematical concept of a "Banchoff index" associated with discrete Morse functions for oriented triangular meshes has been shown to correspond to the height assignments of nodes in adinkras. In recent work there has been introduced the concept of "Banchoff matrices" leading to HYMNs - height yielding matrix numbers. HYMNs map the shape of an adinkra to a set of eigenvalues derived from Banchoff matrices. In the context of some examples of four-color, minimal five-color, and minimal six-color adinkras, properties of the HYMNs are explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信