代数上的准同态及其应用

Pub Date : 2023-06-01 DOI:10.1142/s1005386723000160
X. Cao, S.H. Liu, X.S. Lu, Z.J. Ye, Z.R. Yu, Y.H. Zhang
{"title":"代数上的准同态及其应用","authors":"X. Cao, S.H. Liu, X.S. Lu, Z.J. Ye, Z.R. Yu, Y.H. Zhang","doi":"10.1142/s1005386723000160","DOIUrl":null,"url":null,"abstract":"The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derimorphisms over Algebras and Applications\",\"authors\":\"X. Cao, S.H. Liu, X.S. Lu, Z.J. Ye, Z.R. Yu, Y.H. Zhang\",\"doi\":\"10.1142/s1005386723000160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定义了派生和同态的新概念“非同态”。当一个非纯态是可逆的,它的逆就是一个Rota-Baxter算子。建立了非纯态的一般理论。得到了一个结合一元代数上所有非纯态的分类。与非平凡正导数的不存在性相反,证明了在完全有序域上的格序满矩阵代数和上三角矩阵代数上的任意对相反序上的非平凡正子纯态确实存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Derimorphisms over Algebras and Applications
The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信