{"title":"代数上的准同态及其应用","authors":"X. Cao, S.H. Liu, X.S. Lu, Z.J. Ye, Z.R. Yu, Y.H. Zhang","doi":"10.1142/s1005386723000160","DOIUrl":null,"url":null,"abstract":"The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"115 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derimorphisms over Algebras and Applications\",\"authors\":\"X. Cao, S.H. Liu, X.S. Lu, Z.J. Ye, Z.R. Yu, Y.H. Zhang\",\"doi\":\"10.1142/s1005386723000160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000160\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000160","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.