关于拉格朗日算子的最小辛面积

Pub Date : 2020-12-05 DOI:10.4310/jsg.2022.v20.n6.a5
Zhengyi Zhou
{"title":"关于拉格朗日算子的最小辛面积","authors":"Zhengyi Zhou","doi":"10.4310/jsg.2022.v20.n6.a5","DOIUrl":null,"url":null,"abstract":"We show that the minimal symplectic area of Lagrangian submanifolds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a $k$-semi-dilation, then the minimal symplectic area is universally bounded for $K(\\pi,1)$-Lagrangians. As a corollary, we show that Arnold chord conjecture holds for the following four cases: (1) $Y$ admits an exact filling with $SH^*(W)=0$ (for some ring coefficient); (2) $Y$ admits a symplectically aspherical filling with $SH^*(W)=0$ and simply connected Legendrians; (3) $Y$ admits an exact filling with a $k$-semi-dilation and the Legendrian is a $K(\\pi,1)$ space; (4) $Y$ is the cosphere bundle $S^*Q$ with $\\pi_2(Q)\\to H_2(Q)$ nontrivial and the Legendrian has trivial $\\pi_2$. In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with $k$-semi-dilations in all dimensions $\\ge 4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the minimal symplectic area of Lagrangians\",\"authors\":\"Zhengyi Zhou\",\"doi\":\"10.4310/jsg.2022.v20.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the minimal symplectic area of Lagrangian submanifolds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a $k$-semi-dilation, then the minimal symplectic area is universally bounded for $K(\\\\pi,1)$-Lagrangians. As a corollary, we show that Arnold chord conjecture holds for the following four cases: (1) $Y$ admits an exact filling with $SH^*(W)=0$ (for some ring coefficient); (2) $Y$ admits a symplectically aspherical filling with $SH^*(W)=0$ and simply connected Legendrians; (3) $Y$ admits an exact filling with a $k$-semi-dilation and the Legendrian is a $K(\\\\pi,1)$ space; (4) $Y$ is the cosphere bundle $S^*Q$ with $\\\\pi_2(Q)\\\\to H_2(Q)$ nontrivial and the Legendrian has trivial $\\\\pi_2$. In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with $k$-semi-dilations in all dimensions $\\\\ge 4$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n6.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n6.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

证明了拉格朗日子流形的极小辛面积在辛非球域上是普遍有界的。如果精确定义域允许$k$ -半膨胀,则对于$K(\pi,1)$ -拉格朗日,最小辛面积是普遍有界的。作为推论,我们证明Arnold弦猜想在以下四种情况下成立:(1)$Y$允许$SH^*(W)=0$的精确填充(对于某些环系数);(2) $Y$允许一个含有$SH^*(W)=0$和单连通Legendrians的辛非球面填充;(3) $Y$允许一个$k$ -半膨胀的精确填充,Legendrian是一个$K(\pi,1)$空间;(4) $Y$是具有$\pi_2(Q)\to H_2(Q)$非平凡的球束$S^*Q$, Legendrian具有平凡的球束$\pi_2$。此外,我们在情形(1)中得到了同斜轨道的存在性。我们还提供了更多的在所有维度$\ge 4$中$k$ -半膨胀的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the minimal symplectic area of Lagrangians
We show that the minimal symplectic area of Lagrangian submanifolds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a $k$-semi-dilation, then the minimal symplectic area is universally bounded for $K(\pi,1)$-Lagrangians. As a corollary, we show that Arnold chord conjecture holds for the following four cases: (1) $Y$ admits an exact filling with $SH^*(W)=0$ (for some ring coefficient); (2) $Y$ admits a symplectically aspherical filling with $SH^*(W)=0$ and simply connected Legendrians; (3) $Y$ admits an exact filling with a $k$-semi-dilation and the Legendrian is a $K(\pi,1)$ space; (4) $Y$ is the cosphere bundle $S^*Q$ with $\pi_2(Q)\to H_2(Q)$ nontrivial and the Legendrian has trivial $\pi_2$. In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with $k$-semi-dilations in all dimensions $\ge 4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信