表征单项式系统计算复杂度的shannon -型函数的渐近行为

IF 0.1 Q4 MATHEMATICS, APPLIED
S. A. Korneev
{"title":"表征单项式系统计算复杂度的shannon -型函数的渐近行为","authors":"S. A. Korneev","doi":"10.26907/2541-7746.2020.3.300-310","DOIUrl":null,"url":null,"abstract":"In this paper, we examined the computational complexity of systems of monomials for some models that allow multiple use of intermediate results, such as composition circuits and multiplication circuits. For these models, we studied Shannon-type functions that characterize the maximum computational complexity of systems of monomials with exponents not exceeding the corresponding elements of a given matrix A . We found that for composition circuits, under the condition of unlimited growth of the maximum of matrix elements, this function grows asymptotically as the binary logarithm of the maximum absolute value (without regard to the sign) of the term from the determinant of the matrix A. Using generalized circuits as an auxiliary model, we transferred this result (under some restrictions) to the model of multiplication circuits.","PeriodicalId":41863,"journal":{"name":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","volume":"8 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Asymptotic Behavior of Shannon-Type Functions Characterizing the Computing Complexity of Systems of Monomials\",\"authors\":\"S. A. Korneev\",\"doi\":\"10.26907/2541-7746.2020.3.300-310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examined the computational complexity of systems of monomials for some models that allow multiple use of intermediate results, such as composition circuits and multiplication circuits. For these models, we studied Shannon-type functions that characterize the maximum computational complexity of systems of monomials with exponents not exceeding the corresponding elements of a given matrix A . We found that for composition circuits, under the condition of unlimited growth of the maximum of matrix elements, this function grows asymptotically as the binary logarithm of the maximum absolute value (without regard to the sign) of the term from the determinant of the matrix A. Using generalized circuits as an auxiliary model, we transferred this result (under some restrictions) to the model of multiplication circuits.\",\"PeriodicalId\":41863,\"journal\":{\"name\":\"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/2541-7746.2020.3.300-310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/2541-7746.2020.3.300-310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们研究了一些允许多次使用中间结果的模型的单项式系统的计算复杂性,例如组合电路和乘法电路。对于这些模型,我们研究了表征指数不超过给定矩阵a的相应元素的单项式系统的最大计算复杂度的Shannon-type函数。我们发现,对于复合电路,在矩阵元素的最大值无限增长的条件下,该函数作为矩阵a的行列式项的最大绝对值(不考虑符号)的二进制对数渐近增长。使用广义电路作为辅助模型,我们将这个结果(在一定的限制下)转移到乘法电路模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Asymptotic Behavior of Shannon-Type Functions Characterizing the Computing Complexity of Systems of Monomials
In this paper, we examined the computational complexity of systems of monomials for some models that allow multiple use of intermediate results, such as composition circuits and multiplication circuits. For these models, we studied Shannon-type functions that characterize the maximum computational complexity of systems of monomials with exponents not exceeding the corresponding elements of a given matrix A . We found that for composition circuits, under the condition of unlimited growth of the maximum of matrix elements, this function grows asymptotically as the binary logarithm of the maximum absolute value (without regard to the sign) of the term from the determinant of the matrix A. Using generalized circuits as an auxiliary model, we transferred this result (under some restrictions) to the model of multiplication circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信