{"title":"基于单目相机的ADAS车辆间距离和相对速度估计的端到端学习","authors":"Zhenbo Song, Jianfeng Lu, Tong Zhang, Hongdong Li","doi":"10.1109/ICRA40945.2020.9197557","DOIUrl":null,"url":null,"abstract":"Inter-vehicle distance and relative velocity estimations are two basic functions for any ADAS (Advanced driver-assistance systems). In this paper, we propose a monocular camera based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network. The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames, which include deep feature clue, scene geometry clue, as well as temporal optical flow clue. We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field (i.e. optical flow). We implement the method by a light-weight deep neural network. Extensive experiments are conducted which confirm the superior performance of our method over other state-of-the-art methods, in terms of estimation accuracy, computational speed, and memory footprint.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"50 1","pages":"11081-11087"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"End-to-end Learning for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a Monocular Camera\",\"authors\":\"Zhenbo Song, Jianfeng Lu, Tong Zhang, Hongdong Li\",\"doi\":\"10.1109/ICRA40945.2020.9197557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-vehicle distance and relative velocity estimations are two basic functions for any ADAS (Advanced driver-assistance systems). In this paper, we propose a monocular camera based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network. The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames, which include deep feature clue, scene geometry clue, as well as temporal optical flow clue. We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field (i.e. optical flow). We implement the method by a light-weight deep neural network. Extensive experiments are conducted which confirm the superior performance of our method over other state-of-the-art methods, in terms of estimation accuracy, computational speed, and memory footprint.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"50 1\",\"pages\":\"11081-11087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-end Learning for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a Monocular Camera
Inter-vehicle distance and relative velocity estimations are two basic functions for any ADAS (Advanced driver-assistance systems). In this paper, we propose a monocular camera based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network. The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames, which include deep feature clue, scene geometry clue, as well as temporal optical flow clue. We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field (i.e. optical flow). We implement the method by a light-weight deep neural network. Extensive experiments are conducted which confirm the superior performance of our method over other state-of-the-art methods, in terms of estimation accuracy, computational speed, and memory footprint.