基于单目相机的ADAS车辆间距离和相对速度估计的端到端学习

Zhenbo Song, Jianfeng Lu, Tong Zhang, Hongdong Li
{"title":"基于单目相机的ADAS车辆间距离和相对速度估计的端到端学习","authors":"Zhenbo Song, Jianfeng Lu, Tong Zhang, Hongdong Li","doi":"10.1109/ICRA40945.2020.9197557","DOIUrl":null,"url":null,"abstract":"Inter-vehicle distance and relative velocity estimations are two basic functions for any ADAS (Advanced driver-assistance systems). In this paper, we propose a monocular camera based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network. The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames, which include deep feature clue, scene geometry clue, as well as temporal optical flow clue. We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field (i.e. optical flow). We implement the method by a light-weight deep neural network. Extensive experiments are conducted which confirm the superior performance of our method over other state-of-the-art methods, in terms of estimation accuracy, computational speed, and memory footprint.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"50 1","pages":"11081-11087"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"End-to-end Learning for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a Monocular Camera\",\"authors\":\"Zhenbo Song, Jianfeng Lu, Tong Zhang, Hongdong Li\",\"doi\":\"10.1109/ICRA40945.2020.9197557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-vehicle distance and relative velocity estimations are two basic functions for any ADAS (Advanced driver-assistance systems). In this paper, we propose a monocular camera based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network. The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames, which include deep feature clue, scene geometry clue, as well as temporal optical flow clue. We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field (i.e. optical flow). We implement the method by a light-weight deep neural network. Extensive experiments are conducted which confirm the superior performance of our method over other state-of-the-art methods, in terms of estimation accuracy, computational speed, and memory footprint.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"50 1\",\"pages\":\"11081-11087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

车辆间距离和相对速度估计是任何ADAS(高级驾驶员辅助系统)的两个基本功能。在本文中,我们提出了一种基于端到端深度神经网络训练的基于单目摄像机的车辆间距离和相对速度估计方法。该方法的新颖之处在于将任意两个时间连续的单目图像提供的多重视觉线索进行融合,包括深度特征线索、场景几何线索和时间光流线索。我们还提出了一种以车辆为中心的采样机制,以减轻运动场中透视畸变(即光流)的影响。我们通过一个轻量级的深度神经网络来实现该方法。大量的实验证实了我们的方法在估计精度、计算速度和内存占用方面优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-end Learning for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a Monocular Camera
Inter-vehicle distance and relative velocity estimations are two basic functions for any ADAS (Advanced driver-assistance systems). In this paper, we propose a monocular camera based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network. The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames, which include deep feature clue, scene geometry clue, as well as temporal optical flow clue. We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field (i.e. optical flow). We implement the method by a light-weight deep neural network. Extensive experiments are conducted which confirm the superior performance of our method over other state-of-the-art methods, in terms of estimation accuracy, computational speed, and memory footprint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信