目标伪随机生成器、模拟建议生成器和非随机化日志空间

William M. Hoza, C. Umans
{"title":"目标伪随机生成器、模拟建议生成器和非随机化日志空间","authors":"William M. Hoza, C. Umans","doi":"10.1145/3055399.3055414","DOIUrl":null,"url":null,"abstract":"Assume that for every derandomization result for logspace algorithms, there is a pseudorandom generator strong enough to nearly recover the derandomization by iterating over all seeds and taking a majority vote. We prove under a precise version of this assumption that BPL ⊆ ∩α > 0 DSPACE(log1 + α n). We strengthen the theorem to an equivalence by considering two generalizations of the concept of a pseudorandom generator against logspace. A targeted pseudorandom generator against logspace takes as input a short uniform random seed and a finite automaton; it outputs a long bitstring that looks random to that particular automaton. A simulation advice generator for logspace stretches a small uniform random seed into a long advice string; the requirement is that there is some logspace algorithm that, given a finite automaton and this advice string, simulates the automaton reading a long uniform random input. We prove that ∩α > 0 prBPSPACE(log1 + α n) = ∩α > 0 prDSPACE(log1 + α n) if and only if for every targeted pseudorandom generator against logspace, there is a simulation advice generator for logspace with similar parameters. Finally, we observe that in a certain uniform setting (namely, if we only worry about sequences of automata that can be generated in logspace), targeted pseudorandom generators against logspace can be transformed into simulation advice generators with similar parameters.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Targeted pseudorandom generators, simulation advice generators, and derandomizing logspace\",\"authors\":\"William M. Hoza, C. Umans\",\"doi\":\"10.1145/3055399.3055414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume that for every derandomization result for logspace algorithms, there is a pseudorandom generator strong enough to nearly recover the derandomization by iterating over all seeds and taking a majority vote. We prove under a precise version of this assumption that BPL ⊆ ∩α > 0 DSPACE(log1 + α n). We strengthen the theorem to an equivalence by considering two generalizations of the concept of a pseudorandom generator against logspace. A targeted pseudorandom generator against logspace takes as input a short uniform random seed and a finite automaton; it outputs a long bitstring that looks random to that particular automaton. A simulation advice generator for logspace stretches a small uniform random seed into a long advice string; the requirement is that there is some logspace algorithm that, given a finite automaton and this advice string, simulates the automaton reading a long uniform random input. We prove that ∩α > 0 prBPSPACE(log1 + α n) = ∩α > 0 prDSPACE(log1 + α n) if and only if for every targeted pseudorandom generator against logspace, there is a simulation advice generator for logspace with similar parameters. Finally, we observe that in a certain uniform setting (namely, if we only worry about sequences of automata that can be generated in logspace), targeted pseudorandom generators against logspace can be transformed into simulation advice generators with similar parameters.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

假设对于对数空间算法的每个非随机化结果,都有一个伪随机生成器,它足够强大,可以通过遍历所有种子并进行多数投票来几乎恢复非随机化。我们在该假设的一个精确版本下证明了BPL∧∩α > 0 DSPACE(log1 + α n)。通过考虑对数空间上伪随机生成器概念的两个推广,我们将该定理加强为一个等价。针对对数空间的目标伪随机生成器以短均匀随机种子和有限自动机作为输入;它输出一个长位串,在这个特定的自动机看来是随机的。日志空间的模拟通知生成器将一个小的均匀随机种子拉伸成一个长通知字符串;要求是有一些对数空间算法,给定一个有限自动机和这个建议字符串,模拟自动机读取一个长均匀随机输入。证明∩α > 0 prBPSPACE(log1 + α n) =∩α > 0 prDSPACE(log1 + α n)当且仅当对于每一个针对日志空间的目标伪随机生成器,存在一个具有相似参数的日志空间模拟建议生成器。最后,我们观察到,在一定的统一设置中(即,如果我们只关心可以在日志空间中生成的自动机序列),针对日志空间的目标伪随机生成器可以转换为具有相似参数的仿真建议生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted pseudorandom generators, simulation advice generators, and derandomizing logspace
Assume that for every derandomization result for logspace algorithms, there is a pseudorandom generator strong enough to nearly recover the derandomization by iterating over all seeds and taking a majority vote. We prove under a precise version of this assumption that BPL ⊆ ∩α > 0 DSPACE(log1 + α n). We strengthen the theorem to an equivalence by considering two generalizations of the concept of a pseudorandom generator against logspace. A targeted pseudorandom generator against logspace takes as input a short uniform random seed and a finite automaton; it outputs a long bitstring that looks random to that particular automaton. A simulation advice generator for logspace stretches a small uniform random seed into a long advice string; the requirement is that there is some logspace algorithm that, given a finite automaton and this advice string, simulates the automaton reading a long uniform random input. We prove that ∩α > 0 prBPSPACE(log1 + α n) = ∩α > 0 prDSPACE(log1 + α n) if and only if for every targeted pseudorandom generator against logspace, there is a simulation advice generator for logspace with similar parameters. Finally, we observe that in a certain uniform setting (namely, if we only worry about sequences of automata that can be generated in logspace), targeted pseudorandom generators against logspace can be transformed into simulation advice generators with similar parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信