{"title":"线性区间方程的区间AOR方法的收敛性","authors":"Jahnabi Chakravarty, Ashiho Athikho, M. Saha","doi":"10.3934/NACO.2021006","DOIUrl":null,"url":null,"abstract":"A real interval vector/matrix is an array whose entries are real intervals. In this paper, we consider the real linear interval equations \\begin{document}$ \\bf{Ax} = \\bf{b} $\\end{document} with \\begin{document}$ {{\\bf{A}} }$\\end{document} , \\begin{document}$ \\bf{b} $\\end{document} respectively, denote an interval matrix and an interval vector. The aim of the paper is to study the numerical solution of the linear interval equations for various classes of coefficient interval matrices. In particular, we study the convergence of interval AOR method when the coefficient interval matrix is either interval strictly diagonally dominant matrices, interval \\begin{document}$ L $\\end{document} -matrices, interval \\begin{document}$ M $\\end{document} -matrices, or interval \\begin{document}$ H $\\end{document} -matrices.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"91 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence of interval AOR method for linear interval equations\",\"authors\":\"Jahnabi Chakravarty, Ashiho Athikho, M. Saha\",\"doi\":\"10.3934/NACO.2021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real interval vector/matrix is an array whose entries are real intervals. In this paper, we consider the real linear interval equations \\\\begin{document}$ \\\\bf{Ax} = \\\\bf{b} $\\\\end{document} with \\\\begin{document}$ {{\\\\bf{A}} }$\\\\end{document} , \\\\begin{document}$ \\\\bf{b} $\\\\end{document} respectively, denote an interval matrix and an interval vector. The aim of the paper is to study the numerical solution of the linear interval equations for various classes of coefficient interval matrices. In particular, we study the convergence of interval AOR method when the coefficient interval matrix is either interval strictly diagonally dominant matrices, interval \\\\begin{document}$ L $\\\\end{document} -matrices, interval \\\\begin{document}$ M $\\\\end{document} -matrices, or interval \\\\begin{document}$ H $\\\\end{document} -matrices.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/NACO.2021006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/NACO.2021006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
摘要
A real interval vector/matrix is an array whose entries are real intervals. In this paper, we consider the real linear interval equations \begin{document}$ \bf{Ax} = \bf{b} $\end{document} with \begin{document}$ {{\bf{A}} }$\end{document} , \begin{document}$ \bf{b} $\end{document} respectively, denote an interval matrix and an interval vector. The aim of the paper is to study the numerical solution of the linear interval equations for various classes of coefficient interval matrices. In particular, we study the convergence of interval AOR method when the coefficient interval matrix is either interval strictly diagonally dominant matrices, interval \begin{document}$ L $\end{document} -matrices, interval \begin{document}$ M $\end{document} -matrices, or interval \begin{document}$ H $\end{document} -matrices.
Convergence of interval AOR method for linear interval equations
A real interval vector/matrix is an array whose entries are real intervals. In this paper, we consider the real linear interval equations \begin{document}$ \bf{Ax} = \bf{b} $\end{document} with \begin{document}$ {{\bf{A}} }$\end{document} , \begin{document}$ \bf{b} $\end{document} respectively, denote an interval matrix and an interval vector. The aim of the paper is to study the numerical solution of the linear interval equations for various classes of coefficient interval matrices. In particular, we study the convergence of interval AOR method when the coefficient interval matrix is either interval strictly diagonally dominant matrices, interval \begin{document}$ L $\end{document} -matrices, interval \begin{document}$ M $\end{document} -matrices, or interval \begin{document}$ H $\end{document} -matrices.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.