IF 1 Q1 MATHEMATICS
Karol Pąk
{"title":"Grothendieck Universes","authors":"Karol Pąk","doi":"10.2478/forma-2020-0018","DOIUrl":null,"url":null,"abstract":"Summary The foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] formalism, that the Grothendieck name is justified. We show the relationship between Tarski and Grothendieck universe. First we prove in Theorem (17) that every Grothendieck universe satisfies Tarski’s Axiom A. Then in Theorem (18) we prove that every Grothendieck universe that contains a given set X, even the least (with respect to inclusion) denoted by GrothendieckUniverseX, has as a subset the least (with respect to inclusion) Tarski universe that contains X, denoted by the Tarski-ClassX. Since Tarski universes, as opposed to Grothendieck universes [5], might not be transitive (called epsilon-transitive in the Mizar Mathematical Library [1]) we focused our attention to demonstrate that Tarski-Class X ⊊ GrothendieckUniverse X for some X. Then we show in Theorem (19) that Tarski-ClassX where X is the singleton of any infinite set is a proper subset of GrothendieckUniverseX. Finally we show that Tarski-Class X = GrothendieckUniverse X holds under the assumption that X is a transitive set. The formalisation is an extension of the formalisation used in [4].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

Mizar数学图书馆[2]的基础是一阶Tarski-Grothendieck集合论。然而,该基础明确地只引用了Tarski的公理A,即对于每一个集合X,存在一个Tarski宇宙U,使得X∈U。在本文中,我们使用Mizar[3]形式主义证明了Grothendieck名称是成立的。我们展示了塔斯基和格罗滕迪克宇宙之间的关系。首先,我们在定理(17)中证明了每一个Grothendieck宇宙都满足Tarski公理a,然后在定理(18)中证明了每一个包含给定集合X的Grothendieck宇宙,即使是由GrothendieckUniverseX表示的最小(关于包含)的tarthendieck宇宙,也有一个包含X的最小(关于包含)Tarski宇宙的子集,由Tarski- classx表示。由于与Grothendieck宇宙[5]相反的Tarski宇宙可能不是可传递的(在Mizar数学库[1]中称为epsilon-transitive),我们将注意力集中在证明对于某些X, Tarski- class X≠GrothendieckUniverseX上。然后我们在定理(19)中证明,其中X是任何无限集的单元素的Tarski- classx是GrothendieckUniverseX的固有子集。最后证明了Tarski-Class X = GrothendieckUniverse X在X是可传递集合的假设下成立。该形式化是[4]中使用的形式化的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grothendieck Universes
Summary The foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] formalism, that the Grothendieck name is justified. We show the relationship between Tarski and Grothendieck universe. First we prove in Theorem (17) that every Grothendieck universe satisfies Tarski’s Axiom A. Then in Theorem (18) we prove that every Grothendieck universe that contains a given set X, even the least (with respect to inclusion) denoted by GrothendieckUniverseX, has as a subset the least (with respect to inclusion) Tarski universe that contains X, denoted by the Tarski-ClassX. Since Tarski universes, as opposed to Grothendieck universes [5], might not be transitive (called epsilon-transitive in the Mizar Mathematical Library [1]) we focused our attention to demonstrate that Tarski-Class X ⊊ GrothendieckUniverse X for some X. Then we show in Theorem (19) that Tarski-ClassX where X is the singleton of any infinite set is a proper subset of GrothendieckUniverseX. Finally we show that Tarski-Class X = GrothendieckUniverse X holds under the assumption that X is a transitive set. The formalisation is an extension of the formalisation used in [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信