{"title":"洛伦兹-闵可夫斯基三维中具有规定曲率的零涡旋","authors":"Z. Sipus, Ljiljana Primorac Gajčić, Ivana Protrka","doi":"10.2478/auom-2020-0043","DOIUrl":null,"url":null,"abstract":"Abstract In Lorentz-Minkowski 3-space, null scrolls are ruled surfaces with a null base curve and null rulings. Their mean, as well as their Gaussian curvature, depends only on a parameter of a base curve. In the present paper, we obtain the first-order nonlinear differential equation (Riccati equation) which relates curvatures of a base curve to curvatures of a null scroll. Conditioned by this equation, we can determine a family of null scrolls with a given null base curve and prescribed curvatures, in particular, a family of minimal and constant mean curvature null scrolls.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Null scrolls with prescribed curvatures in Lorentz-Minkowski 3-space\",\"authors\":\"Z. Sipus, Ljiljana Primorac Gajčić, Ivana Protrka\",\"doi\":\"10.2478/auom-2020-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In Lorentz-Minkowski 3-space, null scrolls are ruled surfaces with a null base curve and null rulings. Their mean, as well as their Gaussian curvature, depends only on a parameter of a base curve. In the present paper, we obtain the first-order nonlinear differential equation (Riccati equation) which relates curvatures of a base curve to curvatures of a null scroll. Conditioned by this equation, we can determine a family of null scrolls with a given null base curve and prescribed curvatures, in particular, a family of minimal and constant mean curvature null scrolls.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Null scrolls with prescribed curvatures in Lorentz-Minkowski 3-space
Abstract In Lorentz-Minkowski 3-space, null scrolls are ruled surfaces with a null base curve and null rulings. Their mean, as well as their Gaussian curvature, depends only on a parameter of a base curve. In the present paper, we obtain the first-order nonlinear differential equation (Riccati equation) which relates curvatures of a base curve to curvatures of a null scroll. Conditioned by this equation, we can determine a family of null scrolls with a given null base curve and prescribed curvatures, in particular, a family of minimal and constant mean curvature null scrolls.