{"title":"幂尖域上平稳Navier-Stokes系统的奇异解","authors":"K. Pileckas, A. Raciene","doi":"10.3846/mma.2021.13836","DOIUrl":null,"url":null,"abstract":"The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessarily has an infinite Dirichlet integral. The formal asymptotic expansion of the solution near the singular point is constructed and the existence of a solution having this asymptotic decomposition is proved.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"6 1","pages":"651-668"},"PeriodicalIF":1.6000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On singular solutions of the stationary Navier-Stokes System in Power Cusp Domains\",\"authors\":\"K. Pileckas, A. Raciene\",\"doi\":\"10.3846/mma.2021.13836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessarily has an infinite Dirichlet integral. The formal asymptotic expansion of the solution near the singular point is constructed and the existence of a solution having this asymptotic decomposition is proved.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"6 1\",\"pages\":\"651-668\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.13836\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.13836","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On singular solutions of the stationary Navier-Stokes System in Power Cusp Domains
The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessarily has an infinite Dirichlet integral. The formal asymptotic expansion of the solution near the singular point is constructed and the existence of a solution having this asymptotic decomposition is proved.