{"title":"摄动分数阶拉普拉斯算子的主特征值问题","authors":"Guangyu Zhao","doi":"10.5556/J.TKJM.52.2021.3209","DOIUrl":null,"url":null,"abstract":"We study a variety of basic properties of the principal eigenvalue of a perturbed fractional Laplace operator and weakly coupled cooperative systems involving fractional Laplace operators. Our work extends a number of well-known properties regarding the principal eigenvalues of linear second-order elliptic operators with Dirichlet boundary condition to perturbed fractional Laplace operators. The establish results are also utilized to investigate the spatio-temporary dynamics of population models.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Principal Eigenvalue Problems for Perturbed Fractional Laplace Operators\",\"authors\":\"Guangyu Zhao\",\"doi\":\"10.5556/J.TKJM.52.2021.3209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a variety of basic properties of the principal eigenvalue of a perturbed fractional Laplace operator and weakly coupled cooperative systems involving fractional Laplace operators. Our work extends a number of well-known properties regarding the principal eigenvalues of linear second-order elliptic operators with Dirichlet boundary condition to perturbed fractional Laplace operators. The establish results are also utilized to investigate the spatio-temporary dynamics of population models.\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.52.2021.3209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.52.2021.3209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Principal Eigenvalue Problems for Perturbed Fractional Laplace Operators
We study a variety of basic properties of the principal eigenvalue of a perturbed fractional Laplace operator and weakly coupled cooperative systems involving fractional Laplace operators. Our work extends a number of well-known properties regarding the principal eigenvalues of linear second-order elliptic operators with Dirichlet boundary condition to perturbed fractional Laplace operators. The establish results are also utilized to investigate the spatio-temporary dynamics of population models.
期刊介绍:
To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.