基于深度学习的肺结节分类

Q4 Engineering
Tomoki Kwajiri, Taro Tezuka
{"title":"基于深度学习的肺结节分类","authors":"Tomoki Kwajiri, Taro Tezuka","doi":"10.11239/JSMBE.55ANNUAL.516","DOIUrl":null,"url":null,"abstract":"Deep learning methods such as the Convolutional Neural Network and the Residual Network were applied to CT scan images in order to classify whether lung nodules become cancerous or not. Especially, the effect of changing the number of layers in the Residual Network was. Experiment were carried out using several models having these two network architectures and consisting of different numbers of layers and parameters.","PeriodicalId":39233,"journal":{"name":"Transactions of Japanese Society for Medical and Biological Engineering","volume":"24 1","pages":"516-517"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of Lung Nodules Using Deep Learning\",\"authors\":\"Tomoki Kwajiri, Taro Tezuka\",\"doi\":\"10.11239/JSMBE.55ANNUAL.516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods such as the Convolutional Neural Network and the Residual Network were applied to CT scan images in order to classify whether lung nodules become cancerous or not. Especially, the effect of changing the number of layers in the Residual Network was. Experiment were carried out using several models having these two network architectures and consisting of different numbers of layers and parameters.\",\"PeriodicalId\":39233,\"journal\":{\"name\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"volume\":\"24 1\",\"pages\":\"516-517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Japanese Society for Medical and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11239/JSMBE.55ANNUAL.516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Japanese Society for Medical and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11239/JSMBE.55ANNUAL.516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

将卷积神经网络(Convolutional Neural Network)、残差网络(Residual Network)等深度学习方法应用于CT扫描图像,对肺结节是否癌变进行分类。特别是,改变残差网络的层数所产生的影响。使用具有这两种网络结构的不同层数和参数的模型进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Lung Nodules Using Deep Learning
Deep learning methods such as the Convolutional Neural Network and the Residual Network were applied to CT scan images in order to classify whether lung nodules become cancerous or not. Especially, the effect of changing the number of layers in the Residual Network was. Experiment were carried out using several models having these two network architectures and consisting of different numbers of layers and parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信